A Novel Feature Selection Method for High-Dimensional Mixed Decision Tables

还原 粗集 计算机科学 特征选择 人工智能 模式识别(心理学) 启发式 预处理器 数据预处理 封面(代数) 特征(语言学) 决策表 集合(抽象数据类型) 数据挖掘 算法 工程类 语言学 程序设计语言 哲学 机械工程
作者
Nguyễn Ngọc Thủy,Sartra Wongthanavasu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 3024-3037 被引量:55
标识
DOI:10.1109/tnnls.2020.3048080
摘要

Attribute reduction, also called feature selection, is one of the most important issues of rough set theory, which is regarded as a vital preprocessing step in pattern recognition, machine learning, and data mining. Nowadays, high-dimensional mixed and incomplete data sets are very common in real-world applications. Certainly, the selection of a promising feature subset from such data sets is a very interesting, but challenging problem. Almost all of the existing methods generated a cover on the space of objects to determine important features. However, some tolerance classes in the cover are useless for the computational process. Thus, this article introduces a new concept of stripped neighborhood covers to reduce unnecessary tolerance classes from the original cover. Based on the proposed stripped neighborhood cover, we define a new reduct in mixed and incomplete decision tables, and then design an efficient heuristic algorithm to find this reduct. For each loop in the main loop of the proposed algorithm, we use an error measure to select an optimal feature and put it into the selected feature subset. Besides, to deal more efficiently with high-dimensional data sets, we also determine redundant features after each loop and remove them from the candidate feature subset. For the purpose of verifying the performance of the proposed algorithm, we carry out experiments on data sets downloaded from public data sources to compare with existing state-of-the-art algorithms. Experimental results showed that our algorithm outperforms compared algorithms, especially in classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蚊蚊爱读书应助LONG采纳,获得10
刚刚
刚刚
大个应助nana采纳,获得10
1秒前
cure完成签到,获得积分10
1秒前
1秒前
1秒前
一小位同学完成签到,获得积分10
1秒前
李健的小迷弟应助dingdang采纳,获得10
1秒前
lucatiel完成签到,获得积分20
1秒前
铃铃发布了新的文献求助10
2秒前
时尚听筠完成签到,获得积分10
3秒前
3秒前
现实的千万完成签到,获得积分10
3秒前
雪白梦容发布了新的文献求助10
3秒前
Ry完成签到,获得积分10
4秒前
浮游应助OFF采纳,获得10
4秒前
大模型应助OFF采纳,获得10
4秒前
蜀安应助沉住气采纳,获得30
5秒前
123关注了科研通微信公众号
5秒前
乐乐应助mty采纳,获得10
5秒前
kinya发布了新的文献求助10
5秒前
ZYN发布了新的文献求助10
5秒前
5秒前
谢婉莹发布了新的文献求助10
6秒前
6秒前
研友_n2rqRn完成签到,获得积分10
6秒前
FOURTEENK关注了科研通微信公众号
8秒前
Lucas应助偷酒的馒头猫采纳,获得10
8秒前
9秒前
9秒前
干净的冷安应助LONG采纳,获得10
9秒前
小晴空完成签到,获得积分10
10秒前
享受不良诱惑完成签到,获得积分10
10秒前
10秒前
乐乐应助典雅的幼菱采纳,获得10
10秒前
亦木澜发布了新的文献求助10
11秒前
11秒前
22222完成签到,获得积分10
12秒前
搜集达人应助GGBOND采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473731
求助须知:如何正确求助?哪些是违规求助? 4575854
关于积分的说明 14354983
捐赠科研通 4503456
什么是DOI,文献DOI怎么找? 2467655
邀请新用户注册赠送积分活动 1455459
关于科研通互助平台的介绍 1429497