DENSE-INception U-net for medical image segmentation

计算机科学 分割 卷积神经网络 块(置换群论) 人工智能 水准点(测量) 特征(语言学) 深度学习 模式识别(心理学) 网络体系结构 图像分割 掷骰子 Sørensen–骰子系数 哲学 几何学 语言学 计算机安全 数学 地理 大地测量学
作者
Ziang Zhang,Chengdong Wu,Sonya Coleman,Dermot Kerr
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:192: 105395-105395 被引量:245
标识
DOI:10.1016/j.cmpb.2020.105395
摘要

Convolutional neural networks (CNNs) play an important role in the field of medical image segmentation. Among many kinds of CNNs, the U-net architecture is one of the most famous fully convolutional network architectures for medical semantic segmentation tasks. Recent work shows that the U-net network can be substantially deeper thus resulting in improved performance on segmentation tasks. Though adding more layers directly into network is a popular way to make a network deeper, it may lead to gradient vanishing or redundant computation during training. A novel CNN architecture is proposed that integrates the Inception-Res module and densely connecting convolutional module into the U-net architecture. The proposed network model consists of the following parts: firstly, the Inception-Res block is designed to increase the width of the network by replacing the standard convolutional layers; secondly, the Dense-Inception block is designed to extract features and make the network more deep without additional parameters; thirdly, the down-sampling block is adopted to reduce the size of feature maps to accelerate learning and the up-sampling block is used to resize the feature maps. The proposed model is tested on images of blood vessel segmentations from retina images, the lung segmentation of CT Data from the benchmark Kaggle datasets and the MRI scan brain tumor segmentation datasets from MICCAI BraTS 2017. The experimental results show that the proposed method can provide better performance on these two tasks compared with the state-of-the-art algorithms. The results reach an average Dice score of 0.9857 in the lung segmentation. For the blood vessel segmentation, the results reach an average Dice score of 0.9582. For the brain tumor segmentation, the results reach an average Dice score of 0.9867. The experiments highlighted that combining the inception module with dense connections in the U-Net architecture is a promising approach for semantic medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万松辉完成签到,获得积分10
1秒前
Yuan88发布了新的文献求助10
2秒前
2秒前
一一完成签到,获得积分10
3秒前
唐落音完成签到,获得积分10
3秒前
清嘉发布了新的文献求助200
3秒前
打打应助hy采纳,获得30
3秒前
123完成签到,获得积分20
4秒前
康康星完成签到,获得积分10
4秒前
zbq来完成签到,获得积分10
4秒前
5秒前
lc完成签到,获得积分10
5秒前
5秒前
胡不喜完成签到,获得积分10
5秒前
舟遥遥发布了新的文献求助10
6秒前
王不留行完成签到,获得积分10
6秒前
7秒前
chen发布了新的文献求助10
7秒前
7秒前
8秒前
LZ完成签到,获得积分10
9秒前
9秒前
端庄邴发布了新的文献求助10
10秒前
夜倾心完成签到,获得积分10
10秒前
平淡满天发布了新的文献求助10
10秒前
11秒前
开飞机的天天完成签到,获得积分10
11秒前
果实发布了新的文献求助10
12秒前
12秒前
vicky完成签到,获得积分10
12秒前
英俊的高跟鞋完成签到,获得积分10
12秒前
闪闪寒云完成签到 ,获得积分10
12秒前
烂漫的紫槐完成签到,获得积分10
12秒前
油炸丸子完成签到,获得积分10
13秒前
wks666666完成签到,获得积分10
13秒前
早点发SCI完成签到,获得积分10
13秒前
iRan完成签到,获得积分10
13秒前
zzzwederfrft完成签到,获得积分10
13秒前
13秒前
果子梨啊发布了新的文献求助30
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934751
求助须知:如何正确求助?哪些是违规求助? 3480183
关于积分的说明 11007954
捐赠科研通 3210148
什么是DOI,文献DOI怎么找? 1774043
邀请新用户注册赠送积分活动 860670
科研通“疑难数据库(出版商)”最低求助积分说明 797869