DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization

解算器 偏微分方程 离散化 计算机科学 应用数学 有限体积法 趋同(经济学) 数学优化 数学 算法 数学分析 物理 机械 经济 经济增长
作者
Rishikesh Ranade,Chris Hill,Jay Pathak
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:378: 113722-113722 被引量:115
标识
DOI:10.1016/j.cma.2021.113722
摘要

Over the last few decades, existing Partial Differential Equation (PDE) solvers have demonstrated a tremendous success in solving complex, non-linear PDEs. Although accurate, these PDE solvers are computationally costly. With the advances in Machine Learning (ML) technologies, there has been a significant increase in the research of using ML to solve PDEs. The goal of this work is to develop an ML-based PDE solver, that couples’ important characteristics of existing PDE solvers with ML technologies. The two solver characteristics that have been adopted in this work are: (1) the use of discretization-based schemes to approximate spatio-temporal partial derivatives and (2) the use of iterative algorithms to solve linearized PDEs in their discrete form. In the presence of highly non-linear, coupled PDE solutions, these strategies can be very important in achieving good accuracy, better stability and faster convergence. Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder–decoder model with PDE variables as both input and output features. During training, the discretization schemes are implemented inside the computational graph to enable faster GPU computation of PDE residuals, which are used to update network weights that result into converged solutions. A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver. The ML-Solver is demonstrated to solve the steady, incompressible Navier–Stokes equations in 3-D for several cases such as, lid-driven cavity, flow past a cylinder and conjugate heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤海未蓝完成签到,获得积分10
刚刚
眼睛大迎波完成签到,获得积分10
2秒前
科研通AI5应助二十八采纳,获得10
2秒前
4秒前
4秒前
orangelion完成签到,获得积分10
4秒前
五花膘完成签到 ,获得积分10
5秒前
科研搬运工完成签到,获得积分10
5秒前
瀚泛完成签到,获得积分10
5秒前
LS发布了新的文献求助10
5秒前
美丽的楼房完成签到 ,获得积分10
5秒前
普鲁卡因完成签到,获得积分10
6秒前
三杠完成签到 ,获得积分10
7秒前
芋圆完成签到,获得积分10
7秒前
辛坦夫完成签到,获得积分10
8秒前
流沙无言完成签到 ,获得积分10
8秒前
9秒前
茹茹发布了新的文献求助10
10秒前
ff完成签到,获得积分10
10秒前
清爽幻竹完成签到,获得积分10
11秒前
ZhouYW应助lcs采纳,获得10
11秒前
和谐的醉山完成签到,获得积分10
12秒前
漂漂亮亮大番薯完成签到,获得积分10
12秒前
伊一完成签到,获得积分10
13秒前
YZ发布了新的文献求助10
14秒前
paojiao不辣完成签到,获得积分10
14秒前
15秒前
LS完成签到,获得积分10
16秒前
欢呼的花卷完成签到,获得积分10
16秒前
bobecust完成签到,获得积分10
17秒前
张琦发布了新的文献求助10
18秒前
隐形曼青应助qiao采纳,获得10
18秒前
傲娇的咖啡豆完成签到,获得积分10
18秒前
tym完成签到,获得积分10
19秒前
酥糖完成签到,获得积分10
19秒前
烟花应助kk子采纳,获得10
19秒前
李怀玉完成签到,获得积分10
22秒前
怡然猎豹完成签到,获得积分10
22秒前
yujing2021完成签到,获得积分10
22秒前
桂花完成签到 ,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301387
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805488
科研通“疑难数据库(出版商)”最低求助积分说明 762626