DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization

解算器 偏微分方程 离散化 计算机科学 应用数学 有限体积法 趋同(经济学) 数学优化 数学 算法 数学分析 物理 机械 经济 经济增长
作者
Rishikesh Ranade,Chris Hill,Jay Pathak
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:378: 113722-113722 被引量:134
标识
DOI:10.1016/j.cma.2021.113722
摘要

Over the last few decades, existing Partial Differential Equation (PDE) solvers have demonstrated a tremendous success in solving complex, non-linear PDEs. Although accurate, these PDE solvers are computationally costly. With the advances in Machine Learning (ML) technologies, there has been a significant increase in the research of using ML to solve PDEs. The goal of this work is to develop an ML-based PDE solver, that couples’ important characteristics of existing PDE solvers with ML technologies. The two solver characteristics that have been adopted in this work are: (1) the use of discretization-based schemes to approximate spatio-temporal partial derivatives and (2) the use of iterative algorithms to solve linearized PDEs in their discrete form. In the presence of highly non-linear, coupled PDE solutions, these strategies can be very important in achieving good accuracy, better stability and faster convergence. Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder–decoder model with PDE variables as both input and output features. During training, the discretization schemes are implemented inside the computational graph to enable faster GPU computation of PDE residuals, which are used to update network weights that result into converged solutions. A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver. The ML-Solver is demonstrated to solve the steady, incompressible Navier–Stokes equations in 3-D for several cases such as, lid-driven cavity, flow past a cylinder and conjugate heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pphss完成签到,获得积分10
刚刚
科目三应助学术射手采纳,获得50
2秒前
6秒前
梦想完成签到,获得积分10
8秒前
9秒前
Tony12发布了新的文献求助10
12秒前
Owen应助金三顺采纳,获得10
14秒前
比比完成签到 ,获得积分10
15秒前
15秒前
16秒前
跳跃的语雪完成签到,获得积分20
16秒前
19秒前
abb完成签到,获得积分10
19秒前
yu完成签到,获得积分20
20秒前
zhao完成签到 ,获得积分10
21秒前
Gates发布了新的文献求助10
21秒前
小罗发布了新的文献求助10
22秒前
yu发布了新的文献求助10
22秒前
zhaopeipei发布了新的文献求助10
22秒前
24秒前
24秒前
25秒前
26秒前
26秒前
性静H情逸发布了新的文献求助10
27秒前
27秒前
29秒前
yeyeye发布了新的文献求助30
30秒前
一诺相许完成签到 ,获得积分10
30秒前
小罗完成签到,获得积分10
30秒前
popvich应助liangguangyuan采纳,获得10
31秒前
wuxunxun2015完成签到,获得积分10
31秒前
怕黑的蛋挞完成签到 ,获得积分10
31秒前
只道寻常完成签到,获得积分10
31秒前
32秒前
32秒前
刘老哥6发布了新的文献求助10
32秒前
不会游泳的鱼完成签到 ,获得积分10
33秒前
金三顺发布了新的文献求助10
34秒前
CC发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537055
求助须知:如何正确求助?哪些是违规求助? 3972128
关于积分的说明 12305419
捐赠科研通 3638852
什么是DOI,文献DOI怎么找? 2003525
邀请新用户注册赠送积分活动 1038901
科研通“疑难数据库(出版商)”最低求助积分说明 928336