A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks

守恒定律 有限体积法 离散化 应用数学 非线性系统 标量(数学) 消散 物理 数学分析 数学 统计物理学 几何学 量子力学
作者
Deniz A. Bezgin,Steffen J. Schmidt,Nikolaus A. Adams
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:437: 110324-110324 被引量:18
标识
DOI:10.1016/j.jcp.2021.110324
摘要

We propose a data-driven physics-informed finite-volume scheme for the approximation of small-scale dependent shocks. Nonlinear hyperbolic conservation laws with non-convex fluxes allow nonclassical shock wave solutions. In this work, we consider the cubic scalar conservation law as representative of such systems. As standard numerical schemes fail to approximate nonclassical shocks, schemes with controlled dissipation and schemes with well-controlled dissipation have been introduced by LeFloch and Mohammadian and by Ernest and coworkers, respectively. Emphasis has been placed on matching the truncation error of the numerical scheme with physically relevant small-scale mechanisms. However, aforementioned schemes can introduce oscillations as well as excessive dissipation around shocks. In our approach, a convolutional neural network is used for an adaptive nonlinear flux reconstruction. Based on the local flow field, the network combines local interpolation polynomials with a regularization term to form the numerical flux. This allows to modify the discretization error by nonlinear terms. In a supervised learning task, the model is trained to predict the time evolution of exact solutions to Riemann problems. The model is physics-informed as it respects the underlying conservation law. Numerical experiments for the cubic scalar conservation law show that the resulting method is able to approximate nonclassical shocks very well. The adaptive reconstruction suppresses oscillations and enables sharp shock capturing. Generalization to unseen shock configurations, smooth initial value problems, and shock interactions is robust and shows very good results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研微微发布了新的文献求助10
1秒前
小二郎应助Okayoooooo采纳,获得10
2秒前
2秒前
Hina完成签到,获得积分10
3秒前
4秒前
ly完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
万能图书馆应助zw采纳,获得10
5秒前
6秒前
所所应助sci_zt采纳,获得10
7秒前
Jasper应助科研微微采纳,获得10
7秒前
9秒前
奮斗完成签到,获得积分10
9秒前
9秒前
光锥之外发布了新的文献求助20
10秒前
科研通AI5应助小xy采纳,获得10
10秒前
11秒前
wo_qq111发布了新的文献求助10
11秒前
互助遵法尚德应助俞拽拽采纳,获得10
11秒前
罗罗罗发布了新的文献求助10
12秒前
JamesPei应助amy采纳,获得10
12秒前
12秒前
14秒前
15秒前
lemon发布了新的文献求助10
15秒前
共享精神应助曾泰平采纳,获得10
15秒前
15秒前
郭曦铖发布了新的文献求助10
15秒前
smalldesk完成签到,获得积分10
16秒前
16秒前
Owen应助张张采纳,获得10
18秒前
18秒前
20秒前
zw完成签到,获得积分10
20秒前
20秒前
山猪吃细糠完成签到 ,获得积分10
21秒前
wo_qq111完成签到,获得积分10
22秒前
糟糕的学姐完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Quantum reference frames : from quantum information to spacetime 888
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4386576
求助须知:如何正确求助?哪些是违规求助? 3878893
关于积分的说明 12082974
捐赠科研通 3522486
什么是DOI,文献DOI怎么找? 1933199
邀请新用户注册赠送积分活动 974147
科研通“疑难数据库(出版商)”最低求助积分说明 872339