亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study

医学 肾移植 肾移植 肾移植 内科学 观察研究 重症监护医学
作者
Marc Raynaud,Olivier Aubert,Gillian Divard,Peter P. Reese,Nassim Kamar,Daniel Yoo,Chen-Shan Chin,É. Bailly,Matthias Büchler,Marc Ladrière,Moglie Le Quintrec,Michel Delahousse,Ivana Jurić,Nikolina Bašić‐Jukić,Marta Crespo,Hélio Tedesco‐Silva,Kamilla Linhares,Maria Cristina Ribeiro de Castro,Gervasio Soler Pujol,Jean‐Philippe Empana
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (12): e795-e805 被引量:55
标识
DOI:10.1016/s2589-7500(21)00209-0
摘要

BackgroundKidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating continuously refined predictions of survival using updates of clinical data.MethodsIn this observational study, we used data from adult recipients of kidney transplants from 18 academic transplant centres in Europe, the USA, and South America, and a cohort of patients from six randomised controlled trials. The development cohort comprised patients from four centres in France, with all other patients included in external validation cohorts. To build deeply phenotyped cohorts of transplant recipients, the following data were collected in the development cohort: clinical, histological, immunological variables, and repeated measurements of estimated glomerular filtration rate (eGFR) and proteinuria (measured using the proteinuria to creatininuria ratio). To develop a dynamic prediction system based on these clinical assessments and repeated measurements, we used a Bayesian joint models—an artificial intelligence approach. The prediction performances of the model were assessed via discrimination, through calculation of the area under the receiver operator curve (AUC), and calibration. This study is registered with ClinicalTrials.gov, NCT04258891.Findings13 608 patients were included (3774 in the development cohort and 9834 in the external validation cohorts) and contributed 89 328 patient-years of data, and 416 510 eGFR and proteinuria measurements. Bayesian joint models showed that recipient immunological profile, allograft interstitial fibrosis and tubular atrophy, allograft inflammation, and repeated measurements of eGFR and proteinuria were independent risk factors for allograft survival. The final model showed accurate calibration and very high discrimination in the development cohort (overall dynamic AUC 0·857 [95% CI 0·847–0·866]) with a persistent improvement in AUCs for each new repeated measurement (from 0·780 [0·768–0·794] to 0·926 [0·917–0·932]; p<0·0001). The predictive performance was confirmed in the external validation cohorts from Europe (overall AUC 0·845 [0·837–0·854]), the USA (overall AUC 0·820 [0·808–0·831]), South America (overall AUC 0·868 [0·856–0·880]), and the cohort of patients from randomised controlled trials (overall AUC 0·857 [0·840–0·875]).InterpretationBecause of its dynamic design, this model can be continuously updated and holds value as a bedside tool that could refine the prognostic judgements of clinicians in everyday practice, hence enhancing precision medicine in the transplant setting.FundingMSD Avenir, French National Institute for Health and Medical Research, and Bettencourt Schueller Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
4秒前
且听风吟完成签到,获得积分10
5秒前
16秒前
28秒前
嘟嘟嘟嘟发布了新的文献求助10
35秒前
传奇3应助JodieZhu采纳,获得30
38秒前
42秒前
45秒前
合适的哑铃完成签到,获得积分10
53秒前
54秒前
1分钟前
Able完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
1分钟前
码头整点薯条完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
观潮应助码头整点薯条采纳,获得10
1分钟前
Jasper应助码头整点薯条采纳,获得10
1分钟前
1分钟前
1分钟前
春宇浩然发布了新的文献求助10
1分钟前
1分钟前
roro熊完成签到 ,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
2分钟前
JodieZhu完成签到,获得积分10
2分钟前
2分钟前
义气丹雪应助JodieZhu采纳,获得30
2分钟前
2分钟前
糟糕的颜完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Wei发布了新的文献求助50
2分钟前
wggggggy发布了新的文献求助10
2分钟前
脑洞疼应助春宇浩然采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402