Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study

医学 肾移植 肾移植 肾移植 内科学 观察研究 重症监护医学
作者
Marc Raynaud,Olivier Aubert,Gillian Divard,Peter P. Reese,Nassim Kamar,Daniel Yoo,Chen-Shan Chin,É. Bailly,Matthias Büchler,Marc Ladrière,Moglie Le Quintrec,Michel Delahousse,Ivana Jurić,Nikolina Bašić‐Jukić,Marta Crespo,Hélio Tedesco‐Silva,Kamilla Linhares,Maria Cristina Ribeiro de Castro,Gervasio Soler Pujol,Jean‐Philippe Empana
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (12): e795-e805 被引量:55
标识
DOI:10.1016/s2589-7500(21)00209-0
摘要

BackgroundKidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating continuously refined predictions of survival using updates of clinical data.MethodsIn this observational study, we used data from adult recipients of kidney transplants from 18 academic transplant centres in Europe, the USA, and South America, and a cohort of patients from six randomised controlled trials. The development cohort comprised patients from four centres in France, with all other patients included in external validation cohorts. To build deeply phenotyped cohorts of transplant recipients, the following data were collected in the development cohort: clinical, histological, immunological variables, and repeated measurements of estimated glomerular filtration rate (eGFR) and proteinuria (measured using the proteinuria to creatininuria ratio). To develop a dynamic prediction system based on these clinical assessments and repeated measurements, we used a Bayesian joint models—an artificial intelligence approach. The prediction performances of the model were assessed via discrimination, through calculation of the area under the receiver operator curve (AUC), and calibration. This study is registered with ClinicalTrials.gov, NCT04258891.Findings13 608 patients were included (3774 in the development cohort and 9834 in the external validation cohorts) and contributed 89 328 patient-years of data, and 416 510 eGFR and proteinuria measurements. Bayesian joint models showed that recipient immunological profile, allograft interstitial fibrosis and tubular atrophy, allograft inflammation, and repeated measurements of eGFR and proteinuria were independent risk factors for allograft survival. The final model showed accurate calibration and very high discrimination in the development cohort (overall dynamic AUC 0·857 [95% CI 0·847–0·866]) with a persistent improvement in AUCs for each new repeated measurement (from 0·780 [0·768–0·794] to 0·926 [0·917–0·932]; p<0·0001). The predictive performance was confirmed in the external validation cohorts from Europe (overall AUC 0·845 [0·837–0·854]), the USA (overall AUC 0·820 [0·808–0·831]), South America (overall AUC 0·868 [0·856–0·880]), and the cohort of patients from randomised controlled trials (overall AUC 0·857 [0·840–0·875]).InterpretationBecause of its dynamic design, this model can be continuously updated and holds value as a bedside tool that could refine the prognostic judgements of clinicians in everyday practice, hence enhancing precision medicine in the transplant setting.FundingMSD Avenir, French National Institute for Health and Medical Research, and Bettencourt Schueller Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助NXK采纳,获得10
1秒前
Anthonywll完成签到 ,获得积分10
3秒前
3秒前
洋洋羊发布了新的文献求助10
3秒前
赵紫怡完成签到 ,获得积分10
4秒前
5秒前
7秒前
852应助iamzhangly30hyit采纳,获得10
7秒前
量子星尘发布了新的文献求助100
7秒前
8秒前
9秒前
晁子枫发布了新的文献求助20
9秒前
蟹黄包发布了新的文献求助10
9秒前
Zhusy发布了新的文献求助10
12秒前
纯真的瑞克完成签到,获得积分10
13秒前
坚强紫山发布了新的文献求助10
13秒前
欢呼平蓝完成签到,获得积分10
13秒前
15秒前
17秒前
17秒前
17秒前
俞雨鱼完成签到,获得积分10
20秒前
书羽发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
一一发布了新的文献求助10
23秒前
23秒前
归尘驳回了Jasper应助
24秒前
量子星尘发布了新的文献求助10
24秒前
实验室应助藏识采纳,获得200
25秒前
科研通AI6应助march采纳,获得10
26秒前
hoangphong完成签到,获得积分10
27秒前
lll发布了新的文献求助10
28秒前
Kaito发布了新的文献求助10
28秒前
赘婿应助咩噗king采纳,获得10
28秒前
28秒前
顾矜应助zl采纳,获得10
31秒前
33秒前
Hantj完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416931
求助须知:如何正确求助?哪些是违规求助? 4532992
关于积分的说明 14137696
捐赠科研通 4449052
什么是DOI,文献DOI怎么找? 2440569
邀请新用户注册赠送积分活动 1432413
关于科研通互助平台的介绍 1409818