Preliminary study of 3 T-MRI native T1-mapping radiomics in differential diagnosis of non-calcified solid pulmonary nodules/masses

医学 接收机工作特性 无线电技术 鉴别诊断 特征选择 放射科 人工智能 核医学 支持向量机 Lasso(编程语言) 模式识别(心理学) 计算机科学 病理 内科学 万维网
作者
Qinqin Yan,Yinqiao Yi,Jie Shen,Fei Shan,Zhiyong Zhang,Guang Yang,Yuxin Shi
出处
期刊:Cancer Cell International [BioMed Central]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12935-021-02195-1
摘要

Cumulative CT radiation damage was positively correlated with increased tumor risks. Although it has recently been known that non-radiation MRI is alternative for pulmonary imaging. There is little known about the value of MRI T1-mapping in the diagnosis of pulmonary nodules. This article aimed to investigate the value of native T1-mapping-based radiomics features in differential diagnosis of pulmonary lesions.73 patients underwent 3 T-MRI examination in this prospective study. The 99 pulmonary lesions on native T1-mapping images were segmented twice by one radiologist at indicated time points utilizing the in-house semi-automated software, followed by extraction of radiomics features. The inter-class correlation coefficient (ICC) was used for analyzing intra-observer's agreement. Dimensionality reduction and feature selection were performed via univariate analysis, and least absolute shrinkage and selection operator (LASSO) analysis. Then, the binary logical regression (LR), support vector machine (SVM) and decision tree classifiers with the input of optimal features were selected for differentiating malignant from benign lesions. The receiver operative characteristics (ROC) curve, area under the curve (AUC), sensitivity, specificity and accuracy were calculated. Z-test was used to compare differences among AUCs.107 features were obtained, of them, 19.5% (n = 21) had relatively good reliability (ICC ≥ 0.6). The remained 5 features (3 GLCM, 1 GLSZM and 1 shape features) by dimensionality reduction were useful. The AUC of LR was 0.82(95%CI: 0.67-0.98), with sensitivity, specificity and accuracy of 70%, 85% and 80%. The AUC of SVM was 0.82(95%CI: 0.67-0.98), with sensitivity, specificity and accuracy of 70, 85 and 80%. The AUC of decision tree was 0.69(95%CI: 0.49-0.87), with sensitivity, specificity and accuracy of 50, 85 and 73.3%.The LR and SVM models using native T1-mapping-based radiomics features can differentiate pulmonary malignant from benign lesions, especially for uncertain nodules requiring long-term follow-ups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不知道完成签到,获得积分10
1秒前
艾比拜发布了新的文献求助10
1秒前
ZWZ发布了新的文献求助10
2秒前
ZS完成签到,获得积分10
3秒前
科研通AI5应助背英语采纳,获得10
3秒前
川荣李奈完成签到 ,获得积分10
4秒前
4秒前
Ryan发布了新的文献求助10
5秒前
5秒前
5秒前
ZWZ完成签到,获得积分10
7秒前
8秒前
赧赧完成签到 ,获得积分10
9秒前
顺心道之完成签到,获得积分10
9秒前
gao完成签到 ,获得积分10
9秒前
刘标发布了新的文献求助10
10秒前
10秒前
完美世界应助12333采纳,获得10
11秒前
河鱼心完成签到,获得积分10
12秒前
现代无极发布了新的文献求助10
12秒前
icyeloise完成签到,获得积分10
12秒前
12秒前
511发布了新的文献求助10
13秒前
li完成签到,获得积分10
13秒前
风清扬发布了新的文献求助10
13秒前
13秒前
14秒前
zwd完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
学医的小胖子完成签到 ,获得积分10
15秒前
WoWkie完成签到,获得积分10
16秒前
HHH完成签到,获得积分20
16秒前
ltc完成签到,获得积分10
17秒前
shenyi完成签到,获得积分20
17秒前
17秒前
酷波er应助关艺霖采纳,获得10
17秒前
janice发布了新的文献求助10
18秒前
19秒前
沫沫完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4862426
求助须知:如何正确求助?哪些是违规求助? 4156329
关于积分的说明 12884430
捐赠科研通 3908449
什么是DOI,文献DOI怎么找? 2147151
邀请新用户注册赠送积分活动 1165926
关于科研通互助平台的介绍 1068194