Preliminary study of 3 T-MRI native T1-mapping radiomics in differential diagnosis of non-calcified solid pulmonary nodules/masses

医学 接收机工作特性 无线电技术 鉴别诊断 特征选择 放射科 人工智能 核医学 支持向量机 Lasso(编程语言) 模式识别(心理学) 计算机科学 病理 内科学 万维网
作者
Qinqin Yan,Yinqiao Yi,Jie Shen,Fei Shan,Zhiyong Zhang,Guang Yang,Yuxin Shi
出处
期刊:Cancer Cell International [BioMed Central]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12935-021-02195-1
摘要

Cumulative CT radiation damage was positively correlated with increased tumor risks. Although it has recently been known that non-radiation MRI is alternative for pulmonary imaging. There is little known about the value of MRI T1-mapping in the diagnosis of pulmonary nodules. This article aimed to investigate the value of native T1-mapping-based radiomics features in differential diagnosis of pulmonary lesions.73 patients underwent 3 T-MRI examination in this prospective study. The 99 pulmonary lesions on native T1-mapping images were segmented twice by one radiologist at indicated time points utilizing the in-house semi-automated software, followed by extraction of radiomics features. The inter-class correlation coefficient (ICC) was used for analyzing intra-observer's agreement. Dimensionality reduction and feature selection were performed via univariate analysis, and least absolute shrinkage and selection operator (LASSO) analysis. Then, the binary logical regression (LR), support vector machine (SVM) and decision tree classifiers with the input of optimal features were selected for differentiating malignant from benign lesions. The receiver operative characteristics (ROC) curve, area under the curve (AUC), sensitivity, specificity and accuracy were calculated. Z-test was used to compare differences among AUCs.107 features were obtained, of them, 19.5% (n = 21) had relatively good reliability (ICC ≥ 0.6). The remained 5 features (3 GLCM, 1 GLSZM and 1 shape features) by dimensionality reduction were useful. The AUC of LR was 0.82(95%CI: 0.67-0.98), with sensitivity, specificity and accuracy of 70%, 85% and 80%. The AUC of SVM was 0.82(95%CI: 0.67-0.98), with sensitivity, specificity and accuracy of 70, 85 and 80%. The AUC of decision tree was 0.69(95%CI: 0.49-0.87), with sensitivity, specificity and accuracy of 50, 85 and 73.3%.The LR and SVM models using native T1-mapping-based radiomics features can differentiate pulmonary malignant from benign lesions, especially for uncertain nodules requiring long-term follow-ups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lina发布了新的文献求助30
1秒前
侃侃完成签到,获得积分10
1秒前
Akim应助朴实的纸飞机采纳,获得10
1秒前
2秒前
ZZDXXX完成签到,获得积分10
2秒前
2秒前
wwe发布了新的文献求助10
3秒前
香蕉觅云应助wkkky采纳,获得10
3秒前
bing完成签到 ,获得积分10
3秒前
健忘症发布了新的文献求助20
4秒前
可乐要开心完成签到,获得积分10
4秒前
4秒前
Afeng完成签到,获得积分10
5秒前
5秒前
Zephyra关注了科研通微信公众号
5秒前
TZ完成签到,获得积分10
5秒前
缪伟发布了新的文献求助10
6秒前
aaaaa发布了新的文献求助10
6秒前
ZadeAO完成签到,获得积分10
6秒前
orixero应助冬天该很好采纳,获得10
6秒前
7秒前
娜na完成签到,获得积分10
7秒前
8秒前
daguan完成签到,获得积分10
8秒前
Wang发布了新的文献求助20
8秒前
9秒前
淡淡友瑶完成签到,获得积分10
9秒前
pu发布了新的文献求助10
9秒前
ip07in13完成签到,获得积分10
9秒前
脑洞疼应助壮观的人龙采纳,获得10
9秒前
Zyk完成签到,获得积分10
10秒前
科研通AI5应助xixi采纳,获得10
10秒前
Lesile完成签到,获得积分10
10秒前
11秒前
zyy123888发布了新的文献求助10
11秒前
12秒前
12秒前
飘零的歌手完成签到,获得积分10
13秒前
kekao完成签到,获得积分10
13秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785078
求助须知:如何正确求助?哪些是违规求助? 3330527
关于积分的说明 10246774
捐赠科研通 3045869
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759675