Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application

医学 磁共振成像 颈动脉内膜切除术 放射科 易损斑块 医学影像学 冲程(发动机) 颈动脉 狭窄 病理 心脏病学 机械工程 工程类
作者
Luca Saba,Siva Skandha Sanagala,Suneet Gupta,Vijaya Kumar Koppula,Amer M. Johri,Narendra N. Khanna,Sophie Mavrogeni,John R. Laird,Gyan Pareek,Martin Miner,Petros P. Sfikakis,Athanase D. Protogerou,Durga Prasanna Misra,Vikas Agarwal,Aditya Sharma,Vijay Viswanathan,Vijay Rathore,Monika Turk,Raghu Kolluri,Klaudija Višković
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (14): 1206-1206 被引量:60
标识
DOI:10.21037/atm-20-7676
摘要

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意若烟发布了新的文献求助10
2秒前
2秒前
隐形曼青应助lll采纳,获得10
2秒前
我是牛马发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
ningmengcao完成签到,获得积分10
4秒前
田様应助贺呵呵采纳,获得10
5秒前
5秒前
六只鱼发布了新的文献求助10
5秒前
cya发布了新的文献求助10
5秒前
6秒前
李健的小迷弟应助CD采纳,获得10
6秒前
7秒前
7秒前
leez发布了新的文献求助10
7秒前
duchangzheng完成签到,获得积分10
7秒前
9秒前
9秒前
Flex完成签到,获得积分10
9秒前
羽翼发布了新的文献求助10
10秒前
落后寒凡发布了新的文献求助30
10秒前
festum完成签到,获得积分10
10秒前
xiaolingc完成签到,获得积分10
10秒前
wang发布了新的文献求助10
10秒前
10秒前
chen发布了新的文献求助10
11秒前
Zain_init发布了新的文献求助10
11秒前
11秒前
12秒前
sdl发布了新的文献求助10
13秒前
himes发布了新的文献求助30
13秒前
14秒前
15秒前
15秒前
海藻发布了新的文献求助10
15秒前
科学家发布了新的文献求助10
15秒前
852应助qc采纳,获得10
16秒前
科研通AI2S应助智多星采纳,获得10
16秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839492
求助须知:如何正确求助?哪些是违规求助? 3381849
关于积分的说明 10519914
捐赠科研通 3101218
什么是DOI,文献DOI怎么找? 1708005
邀请新用户注册赠送积分活动 822093
科研通“疑难数据库(出版商)”最低求助积分说明 773174