CFD modeling of slurry flow erosion wear rate through mitre pipe bend

泥浆 湍流 材料科学 计算流体力学 腐蚀 微粒 公称管道尺寸 流利 体积流量 流量(数学) 机械 岩土工程 复合材料 地质学 物理 古生物学 生物 生态学
作者
Om Parkash,Arvind Kumar,Basant Singh Sikarwar
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (5): 2256-2267 被引量:3
标识
DOI:10.1177/09544062211026353
摘要

Erosive wear caused by particulates slurry is one of the major concerns in the pipe bend which may results in the failure of the pipe flow system. In the present work, erosion wear rate through mitre pipe bend caused by silica sand particulates slurry has been investigated using ANSYS Fluent code. The solid spherical particulates of size 125 µm and 250 µm having density of 2650 Kg/m 3 , were tracked to compute the erosion wear rate using Discrete Phase Method (DPM) model. The particulates were tracked using Eulerian-Lagrange approach along with k-ɛ turbulent model for continuous fluid phase. The silica particulates were injected at solid concentration of 5% and 10% (by weight) from the pipe inlet surface for wide range of velocities viz. 1–8 ms −1 . The erosion wear rate was computed through four computational erosion models viz. Generic, Oka, Finnie and Mclaury. Furthermore, the outcomes obtained through Generic models are verified through existing experimental data in the literture. Moreover, the results of DPM concentration, turbulence intensity and particle tracking were predicted to analyze the secondary flow behaviour through the bend cross section. Finally, the effect of particulate size, solid concentration and flow velocity were discussed on erosion wear rate through bend cross section. The findings show that the locality of maximum erosive wear is positioned at the extrados of the bend outlet cross section. Additionally, it is found that Mclaury model offers higher erosion rate as compared to the other models and provides benchmark for designing the slurry pipeline system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXY完成签到 ,获得积分10
刚刚
科研通AI5应助infinite采纳,获得10
刚刚
无花果应助ww采纳,获得10
1秒前
林一贰叁发布了新的文献求助30
2秒前
RUI完成签到 ,获得积分10
2秒前
风清扬发布了新的文献求助50
2秒前
3秒前
3秒前
小二郎应助不做Aspirin采纳,获得10
3秒前
科研通AI5应助迅速的半兰采纳,获得10
4秒前
niuniu完成签到 ,获得积分10
5秒前
林读书完成签到 ,获得积分10
5秒前
安宁完成签到 ,获得积分10
5秒前
6秒前
斯文败类应助Yuki采纳,获得10
6秒前
郭奕彤完成签到,获得积分10
7秒前
Kevin完成签到,获得积分10
7秒前
yshog发布了新的文献求助10
8秒前
Yuri发布了新的文献求助10
9秒前
9秒前
9秒前
chocomi发布了新的文献求助10
9秒前
聪明完成签到 ,获得积分10
10秒前
10秒前
秦磊发布了新的文献求助30
11秒前
余红完成签到,获得积分10
12秒前
翟淑雨发布了新的文献求助10
13秒前
Yuki完成签到,获得积分20
13秒前
梦比优斯发布了新的文献求助10
14秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
小杭76应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
fantastic完成签到,获得积分10
15秒前
思源应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4976571
求助须知:如何正确求助?哪些是违规求助? 4230430
关于积分的说明 13175907
捐赠科研通 4020680
什么是DOI,文献DOI怎么找? 2199810
邀请新用户注册赠送积分活动 1212390
关于科研通互助平台的介绍 1128465