Dynamic relationship network and international management of enterprise supply chain by particle swarm optimization algorithm under deep learning

粒子群优化 计算机科学 趋同(经济学) 算法 惯性 数学优化 人工神经网络 人工智能 数学 经济增长 经典力学 物理 经济
作者
Min Chen,Wenhu Du
出处
期刊:Expert Systems [Wiley]
卷期号:41 (5) 被引量:25
标识
DOI:10.1111/exsy.13081
摘要

Abstract The traditional enterprise decision evaluation model based on neural network has the problems of mismatch with the optimal solution and slow convergence speed. In order to enable companies to make decisions that are in line with changes in the market, the particle swarm optimization (PSO) algorithm is used to optimize deep learning neural networks. Firstly, the model parameter setting is improved, and the inertia weight strategy of normal distribution attenuation is combined. On this basis, a normal distribution decay inertial weight particle swarm optimization (NDPSO) is proposed. The inertia weight of the optimized algorithm maintains a large value in the initial stage, which makes the PSO algorithm maintain a large step size in the optimization process and a small value in the later stage. Through experimental analysis, the trend parameter of the best normal distribution of the algorithm is obtained as 0.4433 and then using the detection function, the NDPSO algorithm is tested by two types of test functions. The NDPSO algorithm is compared with the optimization results of other algorithms which are optimized on the Sphere function. The minimum value of 554.29, the average value of 2032.11, and the standard deviation of 918.47, all of them are at the leading level. Taking into account other experimental results, it is proved that the normal distribution decay inertia weight can balance the global search and local development capabilities from the perspective of parameter improvement. It can speed up the convergence with ensuring the convergence accuracy. The improved PSO algorithm has certain optimization capabilities for neural network models. The use of optimized neural network models can enable companies to make decisions in line with changes in the market and optimize the dynamic relationship network of the company's supply chain, which is of great significance to the implementation of the company's international management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微微完成签到,获得积分10
1秒前
科研通AI5应助hhllhh采纳,获得10
2秒前
ding应助安静的凡松采纳,获得10
2秒前
2秒前
3秒前
搜集达人应助豆子采纳,获得10
3秒前
小余完成签到,获得积分20
3秒前
李健应助清脆不斜采纳,获得10
4秒前
云云发布了新的文献求助10
7秒前
槑槑发布了新的文献求助10
7秒前
清脆语海完成签到,获得积分10
8秒前
勇敢的心发布了新的文献求助10
9秒前
花楹完成签到,获得积分10
9秒前
铁马冰河入梦来完成签到 ,获得积分10
10秒前
11秒前
临诗完成签到,获得积分10
11秒前
12秒前
12秒前
14秒前
皑白祝福完成签到,获得积分10
15秒前
shc发布了新的文献求助10
15秒前
16秒前
16秒前
yuaner发布了新的文献求助10
17秒前
17秒前
lion完成签到 ,获得积分10
17秒前
vadz7x关注了科研通微信公众号
18秒前
云云完成签到 ,获得积分10
19秒前
hhllhh发布了新的文献求助10
19秒前
JamesPei应助怕黑的成危采纳,获得10
19秒前
21秒前
彭于晏应助shine采纳,获得10
21秒前
YMM发布了新的文献求助10
22秒前
科研通AI5应助折耳Doc采纳,获得10
23秒前
23秒前
Linly发布了新的文献求助30
25秒前
蜡笔小新应助阳光襄采纳,获得10
26秒前
shc完成签到,获得积分10
26秒前
ll发布了新的文献求助20
27秒前
桐桐应助mollie采纳,获得30
27秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840126
求助须知:如何正确求助?哪些是违规求助? 3382299
关于积分的说明 10522444
捐赠科研通 3101747
什么是DOI,文献DOI怎么找? 1708284
邀请新用户注册赠送积分活动 822405
科研通“疑难数据库(出版商)”最低求助积分说明 773250