Advances in computer-aided drug design for type 2 diabetes

药物发现 葡萄糖激酶 药品 计算生物学 计算机科学 生物信息学 药理学 糖尿病 医学 生物 内分泌学
作者
Wanqiu Huang,Luyong Zhang,Zheng Li
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:17 (5): 461-472 被引量:3
标识
DOI:10.1080/17460441.2022.2047644
摘要

Introduction The number of diabetic patients is increasing, posing a heavy social and economic burden worldwide. Traditional drug development technology is time-consuming and costly, and the emergence of computer-aided drug design (CADD) has changed this situation. This study reviews the applications of CADD in diabetic drug designing.Areas covered In this article, the authors focus on the advance in CADD in diabetic drug design by elaborating the discovery, including peroxisome proliferator-activated receptor (PPAR), G protein-coupled receptor 40 (GPR40), dipeptidyl peptidase-IV (DDP-IV), protein tyrosine phosphatase 1B (PTP1B), sodium-dependent glucose transporter 2 (SGLT-2), and glucokinase (GK). Some drug discovery of these targets is related to CADD strategies.Expert opinion There is no doubt that CADD has contributed to the discovery of novel anti-diabetic agents. However, there are still many limitations and challenges, such as lack of co-crystal complex, dynamic simulations, water, and metal ion treatment. In the near future, artificial intelligence (AI) may be a promising strategy to accelerate drug discovery and reduce costs by identifying candidates. Moreover, AlphaFold, a deep learning model that predicts the 3D structure of proteins, represents a considerable advancement in the structural prediction of proteins, especially in the absence of homologous templates for protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助wentao采纳,获得10
1秒前
3秒前
彭于彦祖应助zhangting采纳,获得20
5秒前
7秒前
大模型应助1233333采纳,获得20
7秒前
mslln完成签到,获得积分10
8秒前
趙途嘵生发布了新的文献求助30
10秒前
左丘蛟凤完成签到,获得积分10
10秒前
zwq发布了新的文献求助10
10秒前
Lv完成签到,获得积分10
11秒前
wentao完成签到,获得积分20
12秒前
爆米花应助幽默宛亦采纳,获得10
14秒前
wlqc完成签到,获得积分10
15秒前
wanci应助李端采纳,获得10
16秒前
gds完成签到,获得积分10
17秒前
19秒前
22秒前
dd发布了新的文献求助10
23秒前
zxer发布了新的文献求助10
25秒前
27秒前
善学以致用应助希夷采纳,获得20
28秒前
丘比特应助zxer采纳,获得10
28秒前
SEM小菜鸡完成签到,获得积分10
28秒前
29秒前
幽默宛亦发布了新的文献求助10
33秒前
33秒前
科研通AI5应助典雅的黄豆采纳,获得10
34秒前
34秒前
34秒前
Orange应助dd采纳,获得10
34秒前
July完成签到,获得积分10
34秒前
小幸运R完成签到 ,获得积分10
36秒前
37秒前
37秒前
Moter完成签到,获得积分10
37秒前
39秒前
有机发布了新的文献求助10
39秒前
Zhlili发布了新的文献求助20
40秒前
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814371
求助须知:如何正确求助?哪些是违规求助? 3358476
关于积分的说明 10395223
捐赠科研通 3075736
什么是DOI,文献DOI怎么找? 1689502
邀请新用户注册赠送积分活动 812992
科研通“疑难数据库(出版商)”最低求助积分说明 767428