Python(编程语言)
计算机科学
在飞行中
鉴定(生物学)
相似性(几何)
过程(计算)
自动化
数据挖掘
开源
迭代求精
算法
软件
人工智能
程序设计语言
机械工程
工程类
生物
操作系统
图像(数学)
植物
作者
Pedro Baptista de Castro,Kensei Terashima,Miren Garbiñe Esparza Echevarría,Hiroyuki Takeya,Yoshihiko Takano
出处
期刊:Cornell University - arXiv
日期:2021-12-09
被引量:10
标识
DOI:10.1002/adts.202100588
摘要
Analysis of XRD diffraction patterns is one of the keystones of materials\nscience and materials research. With the advancement of data-driven methods for\nmaterials design, candidate materials can be quickly screened for the study of\na desired physical property. Efficient methods to automatically analyze and\nidentify phases present in a given pattern, are paramount for the success of\nthis new paradigm. To aid this process, the open source python package Xray\nEstimation and Refinement Using Similarity (XERUS) for semi-automatic/automatic\nphase identification is presented. XERUS takes advantages of open crystal\nstructure databases, not relying on proprietary databases, to obtain crystal\nstructures on the fly, being then chemical space agnostic. By wrapping around\nGSASII, it can automatically simulate patterns and calculate similarity\nmeasures used for phase identification. Our approach is simple and quick but\nalso applicable to multiphase identification, by coupling the similarity\ncalculations with quick refinements followed by an iterative peak removal\nprocess. XERUS is shown in action in four different experimental datasets and\nalso it is benchmarked against a recently proposed deep learning method for a\nmixture dataset covering the Li-Mn-O-F chemical space. XERUS will be freely\navailable on https://www.github.com/pedrobcst/Xerus/\n
科研通智能强力驱动
Strongly Powered by AbleSci AI