数学
本征函数
斯特姆-刘维尔理论
边值问题
格林函数
数学分析
特征向量
解决方案
操作员(生物学)
希尔伯特空间
微分算子
微分方程
间断(语言学)
跟踪运算符
功能(生物学)
应用数学
混合边界条件
椭圆边值问题
生物
基因
物理
转录因子
进化生物学
量子力学
抑制因子
生物化学
化学
作者
Z. Akdoĝan,Mustafa Demirci,O. Sh. Mukhtarov
摘要
Abstract In this paper, we deal with Sturm–Liouville‐type problems when the potential of the differential equation may have discontinuity at one inner point and the eigenparameter appears not only in the differential equation, but also in both boundary and transmission conditions. By modifying some techniques of (Two‐point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edin. 1977; 77A :293–308; Eigenfunction Expenses Associated with Second‐Order Differential Equations I (2nd edn). Oxford University Press: London, 1962) we generalize some results of the classic regular Sturm–Liouville problems. In particular, we construct Green's function, and derive asymptotic approximation formulae for Green's function. Further, we introduce a new operator‐theoretic formulation in suitable Hilbert space such a way that the considered problem can be interpreted as the eigenvalue problem of this operator and constract the resolvent of this operator in terms of Green's function. Finally, we estimate the norm of resolvent of this operator. Copyright © 2007 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI