Accelerating the discovery of materials for clean energy in the era of smart automation

步伐 软件部署 自动化 机器人学 计算机科学 吞吐量 人工智能 制造工程 系统工程 纳米技术 风险分析(工程) 机器人 工程类 电信 软件工程 机械工程 业务 材料科学 地理 无线 大地测量学
作者
Daniel P. Tabor,Loı̈c M. Roch,Semion K. Saikin,Christoph Kreisbeck,Dennis Sheberla,Joseph H. Montoya,Shyam Dwaraknath,Muratahan Aykol,C. Ortiz,Hermann Tribukait,Carlos Amador‐Bedolla,Christoph J. Brabec,Benji Maruyama,Kristin A. Persson,Alán Aspuru‐Guzik
出处
期刊:Nature Reviews Materials [Nature Portfolio]
卷期号:3 (5): 5-20 被引量:670
标识
DOI:10.1038/s41578-018-0005-z
摘要

The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace. The discovery and development of advanced materials are imperative for the clean energy sector. We envision that a closed-loop approach, which combines high-throughput computation, artificial intelligence and advanced robotics, will sizeably reduce the time to deployment and the costs associated with materials development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
考拉打卡啦完成签到,获得积分10
刚刚
科目三应助化学采纳,获得10
1秒前
酷波er应助zhaoxiaonuan采纳,获得10
1秒前
1秒前
2秒前
jignjing完成签到,获得积分10
3秒前
Helic完成签到,获得积分10
3秒前
灼灼完成签到,获得积分10
4秒前
4秒前
ww完成签到,获得积分10
5秒前
6秒前
发论文完成签到 ,获得积分10
8秒前
8秒前
lyp发布了新的文献求助10
9秒前
传奇3应助无脸男采纳,获得30
10秒前
木木 12完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
徐慕源发布了新的文献求助10
12秒前
莎莎完成签到 ,获得积分10
13秒前
14秒前
kdjm688完成签到,获得积分10
14秒前
16秒前
17秒前
丘比特应助苏邑采纳,获得10
17秒前
17秒前
西卡发布了新的文献求助30
17秒前
17秒前
半夏完成签到 ,获得积分10
18秒前
甄东完成签到,获得积分10
18秒前
Orange应助野性的人达采纳,获得10
18秒前
快乐的板凳完成签到,获得积分10
19秒前
lena发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助卫生五蚕体采纳,获得10
20秒前
1111应助lyp采纳,获得10
20秒前
21秒前
zzb完成签到,获得积分10
21秒前
Moon发布了新的文献求助10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4251094
求助须知:如何正确求助?哪些是违规求助? 3784428
关于积分的说明 11878422
捐赠科研通 3435884
什么是DOI,文献DOI怎么找? 1885460
邀请新用户注册赠送积分活动 937062
科研通“疑难数据库(出版商)”最低求助积分说明 842934