Accelerating the discovery of materials for clean energy in the era of smart automation

步伐 软件部署 自动化 机器人学 计算机科学 吞吐量 人工智能 制造工程 系统工程 纳米技术 风险分析(工程) 机器人 工程类 电信 软件工程 机械工程 业务 材料科学 地理 无线 大地测量学
作者
Daniel P. Tabor,Loı̈c M. Roch,Semion K. Saikin,Christoph Kreisbeck,Dennis Sheberla,Joseph H. Montoya,Shyam Dwaraknath,Muratahan Aykol,C. Ortiz,Hermann Tribukait,Carlos Amador‐Bedolla,Christoph J. Brabec,Benji Maruyama,Kristin A. Persson,Alán Aspuru‐Guzik
出处
期刊:Nature Reviews Materials [Nature Portfolio]
卷期号:3 (5): 5-20 被引量:670
标识
DOI:10.1038/s41578-018-0005-z
摘要

The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace. The discovery and development of advanced materials are imperative for the clean energy sector. We envision that a closed-loop approach, which combines high-throughput computation, artificial intelligence and advanced robotics, will sizeably reduce the time to deployment and the costs associated with materials development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大晓丝完成签到 ,获得积分10
1秒前
1秒前
凤凰山发布了新的文献求助10
2秒前
x1nger发布了新的文献求助10
2秒前
jesi完成签到,获得积分10
3秒前
安详凡发布了新的文献求助10
4秒前
bmj完成签到 ,获得积分10
5秒前
6秒前
Owen应助ycccccc采纳,获得10
7秒前
大方的尔烟完成签到,获得积分10
8秒前
8秒前
9秒前
鱼干完成签到,获得积分20
9秒前
9秒前
10秒前
JESI完成签到,获得积分10
11秒前
CipherSage应助时笙采纳,获得10
11秒前
yfq1018完成签到,获得积分20
11秒前
11秒前
11秒前
13秒前
x1nger发布了新的文献求助10
13秒前
WIK关注了科研通微信公众号
14秒前
CipherSage应助天真大神采纳,获得10
14秒前
泡泡糖完成签到,获得积分10
15秒前
天天完成签到 ,获得积分10
15秒前
爆米花应助凤凰山采纳,获得10
16秒前
ming发布了新的文献求助10
16秒前
17秒前
CX发布了新的文献求助10
17秒前
张才豪发布了新的文献求助10
17秒前
junmahmu完成签到,获得积分10
17秒前
18秒前
CAOHOU应助77采纳,获得10
18秒前
x1nger完成签到,获得积分10
19秒前
小叮当完成签到,获得积分10
20秒前
寜1完成签到,获得积分10
21秒前
汉堡包应助一科研土豆采纳,获得10
21秒前
咳炎泥马完成签到,获得积分10
22秒前
黄bb完成签到,获得积分10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964391
求助须知:如何正确求助?哪些是违规求助? 3510031
关于积分的说明 11150667
捐赠科研通 3244018
什么是DOI,文献DOI怎么找? 1792253
邀请新用户注册赠送积分活动 873681
科研通“疑难数据库(出版商)”最低求助积分说明 803901