Accelerating the discovery of materials for clean energy in the era of smart automation

步伐 软件部署 自动化 机器人学 计算机科学 吞吐量 人工智能 制造工程 系统工程 纳米技术 风险分析(工程) 机器人 工程类 电信 软件工程 机械工程 业务 材料科学 地理 无线 大地测量学
作者
Daniel P. Tabor,Loı̈c M. Roch,Semion K. Saikin,Christoph Kreisbeck,Dennis Sheberla,Joseph H. Montoya,Shyam Dwaraknath,Muratahan Aykol,C. Ortiz,Hermann Tribukait,Carlos Amador‐Bedolla,Christoph J. Brabec,Benji Maruyama,Kristin A. Persson,Alán Aspuru‐Guzik
出处
期刊:Nature Reviews Materials [Nature Portfolio]
卷期号:3 (5): 5-20 被引量:655
标识
DOI:10.1038/s41578-018-0005-z
摘要

The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace. The discovery and development of advanced materials are imperative for the clean energy sector. We envision that a closed-loop approach, which combines high-throughput computation, artificial intelligence and advanced robotics, will sizeably reduce the time to deployment and the costs associated with materials development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璟晔发布了新的文献求助10
1秒前
cy发布了新的文献求助10
1秒前
2秒前
希望天下0贩的0应助guilin采纳,获得10
2秒前
小二郎应助青青采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
wodeqiche2007发布了新的文献求助30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
orixero应助霸王萝卜丝采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助ponymjj采纳,获得10
4秒前
米兰的小铁匠完成签到 ,获得积分10
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得50
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
残幻应助科研通管家采纳,获得10
5秒前
5秒前
xixi完成签到 ,获得积分10
5秒前
JingY发布了新的文献求助10
6秒前
surfer363完成签到,获得积分10
6秒前
加百莉发布了新的文献求助10
6秒前
6秒前
科研通AI5应助鲤鱼采纳,获得10
7秒前
科研通AI5应助熄灯睡觉采纳,获得10
7秒前
7秒前
Devon完成签到,获得积分10
7秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793074
求助须知:如何正确求助?哪些是违规求助? 3337816
关于积分的说明 10287022
捐赠科研通 3054320
什么是DOI,文献DOI怎么找? 1675961
邀请新用户注册赠送积分活动 803951
科研通“疑难数据库(出版商)”最低求助积分说明 761615