In search of a robust facial expressions recognition model: A large-scale visual cross-corpus study

一般化 计算机科学 人工智能 领域(数学分析) 模式识别(心理学) 语音识别 面部表情 自然语言处理 机器学习 数学 数学分析
作者
Elena Ryumina,Denis Dresvyanskiy,Alexey Karpov
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:514: 435-450 被引量:51
标识
DOI:10.1016/j.neucom.2022.10.013
摘要

Many researchers have been seeking robust emotion recognition system for already last two decades. It would advance computer systems to a new level of interaction, providing much more natural feedback during human-computer interaction due to analysis of user affect state. However, one of the key problems in this domain is a lack of generalization ability: we observe dramatic degradation of model performance when it was trained on one corpus and evaluated on another one. Although some studies were done in this direction, visual modality still remains under-investigated. Therefore, we introduce the visual cross-corpus study conducted with the utilization of eight corpora, which differ in recording conditions, participants’ appearance characteristics, and complexity of data processing. We propose a visual-based end-to-end emotion recognition framework, which consists of the robust pre-trained backbone model and temporal sub-system in order to model temporal dependencies across many video frames. In addition, a detailed analysis of mistakes and advantages of the backbone model is provided, demonstrating its high ability of generalization. Our results show that the backbone model has achieved the accuracy of 66.4% on the AffectNet dataset, outperforming all the state-of-the-art results. Moreover, the CNN-LSTM model has demonstrated a decent efficacy on dynamic visual datasets during cross-corpus experiments, achieving comparable with state-of-the-art results. In addition, we provide backbone and CNN-LSTM models for future researchers: they can be accessed via GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大个应助Tonald Yang采纳,获得10
1秒前
1秒前
TIGA完成签到 ,获得积分10
1秒前
唐诗发布了新的文献求助10
1秒前
深情安青应助杨起越采纳,获得10
2秒前
Hello应助风铃草采纳,获得10
2秒前
粱踏歌发布了新的文献求助10
2秒前
nunu发布了新的文献求助10
2秒前
2秒前
Lucas应助六宫粉黛采纳,获得10
3秒前
slokni发布了新的文献求助10
3秒前
载尘发布了新的文献求助10
4秒前
4秒前
4秒前
0x3f关注了科研通微信公众号
5秒前
5秒前
5秒前
端庄的冰萍完成签到,获得积分10
5秒前
6秒前
柏林寒冬应助纭汐采纳,获得10
6秒前
认真飞瑶完成签到,获得积分10
6秒前
星星完成签到,获得积分10
6秒前
6秒前
glowworm完成签到 ,获得积分10
7秒前
leo发布了新的文献求助10
7秒前
7秒前
7秒前
123发布了新的文献求助200
8秒前
whatever应助WWwww采纳,获得20
8秒前
9秒前
奈何发布了新的文献求助10
9秒前
时尚的幻灵完成签到,获得积分10
10秒前
10秒前
jiangzong完成签到,获得积分10
10秒前
可爱的函函应助sxw采纳,获得10
10秒前
丘比特应助FeifeiHou采纳,获得50
11秒前
11秒前
zl完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001979
求助须知:如何正确求助?哪些是违规求助? 4247105
关于积分的说明 13232179
捐赠科研通 4045960
什么是DOI,文献DOI怎么找? 2213356
邀请新用户注册赠送积分活动 1223448
关于科研通互助平台的介绍 1143768