Cross-FCL: Toward a Cross-Edge Federated Continual Learning Framework in Mobile Edge Computing Systems

计算机科学 GSM演进的增强数据速率 人工智能
作者
Zhouyangzi Zhang,Bin Guo,Wen Sun,Yan Liu,Zhiwen Yu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 313-326 被引量:20
标识
DOI:10.1109/tmc.2022.3223944
摘要

Federated Learning (FL) in mobile edge computing (MEC) systems has recently been studied extensively. In ubiquitous environments, there are usually cross-edge devices that learn a series of tasks across multiple independent edge FL systems. Due to the differences in the scenarios and tasks of different FL systems, cross-edge devices will forget past tasks after learning new tasks, which is unacceptable for devices that pay system costs to participate in FL. Continual learning (CL) is a viable solution to this problem, which aims to train a model to learn a series of tasks without forgetting old knowledge. Currently, there is no work to investigate the problem of CL in a cross-edge FL scenario. In this paper, we propose Cross-FCL , a Cross -edge F ederated C ontinual L earning framework. Specifically, it enables devices to retain the knowledge learned in the past when participating in new task training through a parameter decomposition based FCL model. Then various cross-edge strategies are introduced, including biased global aggregation and local optimization, to trade off memory and adaptation. We conducted experiments on a real-world dataset and other public datasets. Extensive experiments demonstrate that Cross-FCL achieves best accuracy on IID and highly non-IID tasks with a low storage cost compared to other baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空楷瑞完成签到,获得积分10
1秒前
yin完成签到,获得积分10
1秒前
zwy完成签到 ,获得积分10
1秒前
可爱的石头完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
orchid完成签到,获得积分10
5秒前
6秒前
xxx完成签到,获得积分10
6秒前
zz完成签到,获得积分10
6秒前
vffg完成签到,获得积分10
6秒前
惊蛰时分听春雷完成签到,获得积分10
8秒前
花与爱完成签到,获得积分10
9秒前
ABC完成签到,获得积分10
11秒前
Abi完成签到,获得积分10
12秒前
活力奇异果完成签到,获得积分10
12秒前
调皮帆布鞋完成签到,获得积分10
12秒前
可乐完成签到 ,获得积分10
13秒前
14秒前
bigpluto完成签到,获得积分10
14秒前
老驴拉磨完成签到 ,获得积分10
16秒前
Aiden完成签到 ,获得积分10
17秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
AD应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
ceeray23应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
1111111111应助科研通管家采纳,获得10
20秒前
老福贵儿应助科研通管家采纳,获得10
20秒前
zuijiasunyou完成签到,获得积分10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
AD应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
研友_8WbVOZ完成签到,获得积分10
20秒前
NNi完成签到,获得积分20
20秒前
乘凉完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599964
求助须知:如何正确求助?哪些是违规求助? 4685775
关于积分的说明 14839249
捐赠科研通 4674464
什么是DOI,文献DOI怎么找? 2538479
邀请新用户注册赠送积分活动 1505631
关于科研通互助平台的介绍 1471109