Terminal voltage prediction of Li-Ion batteries using Combined Neural Network and Teaching Learning Based Optimization algorithm

均方误差 电压 人工神经网络 电池(电) 计算机科学 荷电状态 控制理论(社会学) 灵敏度(控制系统) 算法 电子工程 人工智能 数学 工程类 功率(物理) 控制(管理) 电气工程 统计 物理 量子力学
作者
S. Siva Suriya Narayanan,S. Thangavel
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:133: 109954-109954 被引量:15
标识
DOI:10.1016/j.asoc.2022.109954
摘要

The static and dynamic model parameters are critical parameters for the accurate estimation of open-circuit voltage and the terminal voltage of a Lithium-Ion (Li-Ion) battery. This work mainly focuses on the investigation of an accurate method for predicting the open-circuit voltage and terminal voltage of Li-Ion batteries. This work proposes an Enhanced Neural Network and Teaching Learning-Based Optimization (ENN-TLBO) algorithm to predict the terminal voltage of a Li-Ion battery used in electric vehicle applications. In this work, the static model is obtained by using a neural network (NN) while the dynamic model parameters are predicted by using the Teaching Learning Based Optimization technique (TLBO). In the NN method, different network parameters are varied to predict the accurate State of Charge (SoC)-Open Circuit Voltage (OCV) relation of the battery. The proposed static models are validated by the performance metrics such as RMSE and R2, the best static model is identified by low Root Mean Square Error (RMSE) and high R2 value of the model. In recent times many optimization algorithms are reported in the literature to predict the dynamic model, which requires certain algorithm-specific tuning parameters that affects the performance of the algorithm. The proposed TLBO algorithm is implemented with lesser tuning parameters to predict the hysteresis constant of the dynamic model. The RMSE value of the predicted terminal voltage at different temperature profiles is calculated to validate the proposed method. The proposed method has several advantages such as fewer tuning parameters, simple to implement, and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花05发布了新的文献求助10
刚刚
老王完成签到,获得积分10
刚刚
刚刚
斯文败类应助焦儿采纳,获得10
1秒前
Owen应助悦耳的曼安采纳,获得10
1秒前
1秒前
爆米花应助susu采纳,获得10
2秒前
隐形曼青应助星河采纳,获得10
2秒前
2秒前
2秒前
月落完成签到,获得积分10
3秒前
4秒前
4秒前
星辰大海应助killer10831采纳,获得10
4秒前
慕青应助jyby采纳,获得10
4秒前
1Liang完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助隐形静芙采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
Akim应助温柔发卡采纳,获得10
7秒前
8秒前
袁淼发布了新的文献求助10
9秒前
情怀应助Youlu采纳,获得10
9秒前
WangQ发布了新的文献求助10
10秒前
Yuanyuan发布了新的文献求助10
10秒前
忧虑的代芙完成签到,获得积分10
10秒前
小欣完成签到,获得积分10
11秒前
Akim应助vampire采纳,获得10
11秒前
11秒前
打打应助longer采纳,获得10
11秒前
12秒前
13秒前
李健应助Czf采纳,获得10
13秒前
13秒前
13秒前
花05完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
SonE发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172