Graph Flow: Cross-Layer Graph Flow Distillation for Dual Efficient Medical Image Segmentation

计算机科学 人工智能 卷积神经网络 图像分割 分割 网络体系结构 深度学习 图形 机器学习 模式识别(心理学) 理论计算机科学 计算机网络
作者
Wenxuan Zou,Xingqun Qi,Wanting Zhou,Muyi Sun,Zhenan Sun,Caifeng Shan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (4): 1159-1171 被引量:24
标识
DOI:10.1109/tmi.2022.3224459
摘要

With the development of deep convolutional neural networks, medical image segmentation has achieved a series of breakthroughs in recent years. However, high-performance convolutional neural networks always mean numerous parameters and high computation costs, which will hinder the applications in resource-limited medical scenarios. Meanwhile, the scarceness of large-scale annotated medical image datasets further impedes the application of high-performance networks. To tackle these problems, we propose Graph Flow, a comprehensive knowledge distillation framework, for both network-efficiency and annotation-efficiency medical image segmentation. Specifically, the Graph Flow Distillation transfers the essence of cross-layer variations from a well-trained cumbersome teacher network to a non-trained compact student network. In addition, an unsupervised Paraphraser Module is integrated to purify the knowledge of the teacher, which is also beneficial for the training stabilization. Furthermore, we build a unified distillation framework by integrating the adversarial distillation and the vanilla logits distillation, which can further refine the final predictions of the compact network. With different teacher networks (traditional convolutional architecture or prevalent transformer architecture) and student networks, we conduct extensive experiments on four medical image datasets with different modalities (Gastric Cancer, Synapse, BUSI, and CVC-ClinicDB). We demonstrate the prominent ability of our method on these datasets, which achieves competitive performances. Moreover, we demonstrate the effectiveness of our Graph Flow through a novel semi-supervised paradigm for dual efficient medical image segmentation. Our code will be available at Graph Flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
山雷完成签到,获得积分20
2秒前
das完成签到,获得积分10
3秒前
小郭最帅发布了新的文献求助10
5秒前
6秒前
冰柠橙夏完成签到,获得积分10
6秒前
6秒前
Suzzne完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
世界需要我完成签到,获得积分10
7秒前
团子完成签到,获得积分10
7秒前
科研通AI6应助咖啡博士采纳,获得10
7秒前
7秒前
Marga77完成签到,获得积分10
8秒前
伽俽完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
可罗雀完成签到,获得积分0
11秒前
11秒前
12秒前
12秒前
整点儿薯条完成签到,获得积分10
12秒前
12秒前
彭于晏应助山雷采纳,获得10
13秒前
自由发布了新的文献求助10
13秒前
科研通AI6应助LUOYI采纳,获得10
14秒前
14秒前
xy完成签到 ,获得积分10
15秒前
酷波er应助sherry221采纳,获得10
15秒前
16秒前
小马甲应助gaterina采纳,获得10
18秒前
18秒前
123发布了新的文献求助30
18秒前
热心雪一完成签到 ,获得积分10
19秒前
苏苏苏关注了科研通微信公众号
20秒前
20秒前
22秒前
jam发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662838
求助须知:如何正确求助?哪些是违规求助? 4845174
关于积分的说明 15101436
捐赠科研通 4821204
什么是DOI,文献DOI怎么找? 2580624
邀请新用户注册赠送积分活动 1534739
关于科研通互助平台的介绍 1493202