Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin

水流 计算机科学 冰期 数据挖掘 特征(语言学) 环境科学 人工智能 机器学习 流域 地质学 地貌学 地图学 地理 语言学 哲学
作者
Chengde Yang,Min Xu,Shichang Kang,Congsheng Fu,Didi Hu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 129990-129990 被引量:23
标识
DOI:10.1016/j.jhydrol.2023.129990
摘要

Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Fine采纳,获得10
1秒前
WHAT0217完成签到 ,获得积分20
1秒前
侯雨润发布了新的文献求助10
1秒前
共享精神应助huaijie采纳,获得10
2秒前
eddy完成签到,获得积分10
3秒前
干净利落发布了新的文献求助10
3秒前
4秒前
Brightfai完成签到,获得积分10
4秒前
Rae发布了新的文献求助10
4秒前
优美苗条完成签到,获得积分10
5秒前
揽星完成签到,获得积分10
5秒前
光亮妙之完成签到,获得积分10
5秒前
科研通AI2S应助就叫柠檬吧采纳,获得10
5秒前
FF完成签到,获得积分10
5秒前
lovesci发布了新的文献求助10
5秒前
科研通AI6应助每天都快乐采纳,获得10
7秒前
7秒前
小马甲应助尹尹尹采纳,获得10
8秒前
侯雨润完成签到,获得积分10
9秒前
幽默书白完成签到,获得积分10
9秒前
热情迎彤完成签到,获得积分10
9秒前
10秒前
heolmes发布了新的文献求助10
10秒前
乐桉蓝完成签到,获得积分10
10秒前
WJW发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
yhhzz2完成签到 ,获得积分20
11秒前
12秒前
独特的不尤完成签到,获得积分10
12秒前
和谐灯泡完成签到,获得积分10
14秒前
14秒前
FF发布了新的文献求助10
15秒前
15秒前
小二郎应助kingmantj采纳,获得10
16秒前
娜行发布了新的文献求助10
16秒前
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4400110
求助须知:如何正确求助?哪些是违规求助? 3887831
关于积分的说明 12100440
捐赠科研通 3532117
什么是DOI,文献DOI怎么找? 1938289
邀请新用户注册赠送积分活动 979179
科研通“疑难数据库(出版商)”最低求助积分说明 876411