脂质体
谷胱甘肽
血脑屏障
化学
药理学
体内
微泡
跨细胞
生物物理学
并行传输
药代动力学
药物输送
PEG比率
生物化学
生物
膜
内分泌学
中枢神经系统
小RNA
生物技术
经济
磁导率
有机化学
酶
基因
财务
作者
Joy N. Reginald-Opara,Mingtan Tang,Darren Svirskis,Larry Chamley,Zimei Wu
标识
DOI:10.1016/j.ijpharm.2022.122152
摘要
Notwithstanding the growing evidence of improved drug delivery efficiency to the brain by ligand modification of PEGylated liposomes, the comprehensive knowledge of their transport processes and payload across the BBB is yet to be revealed. Herein, this study sought to understand the glutathione (GSH) ligand effect on transcellular transport mechanisms of liposomes through the blood-brain barrier (BBB) by comparing PEGylated liposomes (PEG-L) and GSH PEGylated liposomes (GSH-PEG-L). Endocytosis and exocytosis of liposomes including the role of secreted extracellular vesicles (EVs) of brain endothelial cells (BECs) were assessed. Further pharmacokinetics and brain distribution analysis of gemcitabine loaded liposomes were carried in healthy rats to ascertain the in vivo applicability. Our findings suggested that the presence of GSH increased the cellular uptake of liposomes by up to 3-fold in human brain microvascular endothelial cells depending on the dose but not in astrocytes. The cell exposure to liposomes particularly GSH-PEG-L dramatically increased the cell secretion of small and microvesicles with liposomal components, though different liposomes preferred different vesicles for exocytosis. This correlated with GSH-PEG-L transport efficiency of 4% across the in vitro BBB model in 24 h, 1.7-fold higher than that of PEG-L (p < 0.05). In rats, while PEG-L and GSH-PEG-L showed similar pharmacokinetic profiles and prolonged circulation properties, 3.8% of the total injected dose (ID) of gemcitabine was found in the brain of the GSH-PEG-L group at 8 h post-injection, compared with 2.8% ID in the PEG-L group. A brain: blood concentration ratio of 1.27 ± 0.12 indicated that an active transport mechanism to cross the BBB for GSH-PEG-L. Overall, this study revealed that GSH augmented the transcellular transport efficiency of liposomes through BBB to improve targeted brain delivery by enhancing cellular uptake and vesicular exocytosis route of BECs.
科研通智能强力驱动
Strongly Powered by AbleSci AI