Drivable Space of Rehabilitation Robot for Physical Human–Robot Interaction: Definition and an Expanding Method

机器人 扭矩 计算机科学 人工智能 过程(计算) 人机交互 工作(物理) 控制工程 模拟 控制理论(社会学) 工程类 控制(管理) 机械工程 热力学 操作系统 物理
作者
Weiqun Wang,Xu Liang,Shengda Liu,Tianyu Lin,Pu Zhang,Zhen Lv,Jiaxing Wang,Zeng‐Guang Hou
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 343-356 被引量:4
标识
DOI:10.1109/tro.2022.3189231
摘要

Physical human–robot interaction performance of present rehabilitation robots are still not satisfactory in the clinical practice. Especially, the work space where the robot can be driven smoothly by users is still very limited, which prevents rehabilitation robots from being applied successfully. In this study, a new concept of drivable space is proposed to evaluate the work spaces of rehabilitation robots, and a method for expanding the drivable space is designed based on the dynamics of the coupled human–robot system and human joint characteristics. First, the definition of drivable space is presented based on comparison of human joint torques, and the minimal torques necessary to drive robot joints, which is mainly determined by the torque estimation errors for general rehabilitation robots driven smoothly by motors. Therefore, a method for improving torque estimation accuracies based on dynamics modeling is then designed. A data-driven error prediction method based on Gaussian process regression is proposed to adaptively compensate the model errors, by which the most accurate dynamic model so far for the coupled system can be obtained, and a method for generation of the training dataset, which is used in error prediction, is designed as well. Moreover, the torque–angle relationship of human joints is modeled and used to optimize the torque error distribution, by which it can be proven that the drivable space can be further expanded. Finally, performance of the proposed methods are demonstrated and validated by experiments carried out on a lower limb rehabilitation robot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助123采纳,获得10
刚刚
1秒前
yanwu发布了新的文献求助10
1秒前
濠哥妈咪发布了新的文献求助10
2秒前
Jackcaosky完成签到 ,获得积分10
2秒前
2211发布了新的文献求助10
2秒前
小马甲应助典雅的俊驰采纳,获得10
3秒前
领导范儿应助lljllj采纳,获得10
4秒前
小布完成签到 ,获得积分10
5秒前
6秒前
风景的谷建芬完成签到,获得积分10
7秒前
善学以致用应助ATOM采纳,获得10
9秒前
xd完成签到,获得积分20
10秒前
10秒前
Nicole完成签到 ,获得积分10
11秒前
机智的雨寒完成签到,获得积分10
12秒前
12秒前
思源应助研友_5Zl9D8采纳,获得10
17秒前
十九发布了新的文献求助30
17秒前
liu_关注了科研通微信公众号
18秒前
19秒前
无昵称完成签到 ,获得积分10
21秒前
22秒前
研友_5Zl9D8发布了新的文献求助10
22秒前
adam完成签到,获得积分10
22秒前
22秒前
xd发布了新的文献求助10
23秒前
back you up应助科研通管家采纳,获得30
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
hutu发布了新的文献求助10
23秒前
擦擦完成签到,获得积分10
24秒前
xiaohu完成签到,获得积分10
25秒前
25秒前
温柔的柠檬完成签到 ,获得积分10
26秒前
26秒前
26秒前
欢呼的初蓝完成签到,获得积分10
27秒前
小当家完成签到,获得积分10
27秒前
轩辕德地完成签到,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742