A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images

物候学 普通大麦 遥感 生长季节 环境科学 作物 农学 禾本科 地理 生物
作者
Davoud Ashourloo,Hamed Nematollahi,Alfredo Huete,Hossein Aghighi,Mohsen Azadbakht,Hamid Salehi Shahrabi,Salman Goodarzdashti
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:280: 113206-113206 被引量:39
标识
DOI:10.1016/j.rse.2022.113206
摘要

In recent years, various techniques have been developed to generate crop-type maps based on remote sensing data. Wheat and barley are two major cereal crops cultivated as the first and fourth largest grain crops across the globe. The variations in spectral temporal profile of both crops are generally insignificant at small scales and therefore the two crops are phenologically fairly clearly separated; however, at large scale areas the variance of phenological parameters increases for both crops due to the effects of various climatic and orographic factors which adversely influences discrimination of wheat and barley. Additionally, wheat and barley are usually cultivated as both spring and winter or early and late season crops in some areas, making it more difficult to distinguish them. Therefore, developing a new method based on remote sensing data for effective discrimination of wheat and barley is an important necessity in the field of precision agriculture. To this end, this research presents a new phenology-based method to discriminate barley from wheat. In this study, Sentinel-2 (S2) time-series data of a study site in Iran (Markazi) and two sites in the USA (Idaho and North California), are employed. Spectral reflectance values of wheat and barley are examined during the growing season and a new spectral-temporal feature is successfully developed for automatic identification of the barley heading date. The Relief-f algorithm is then employed to select appropriate spectral features of S2 to distinguish wheat from barley at the heading date. Finally, generated spectral features at the heading date are used as input to Support Vector Machine (SVM) and Random Forest (RF) to produce barley and wheat maps. The Kappa coefficient and overall accuracy (OA) obtained for the three study sites are more than 0.67 and 76%, respectively. The findings of this study demonstrate the potential of remote sensing data to identify the phenological growth stages of barley and distinguish it successfully from wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听文轩发布了新的文献求助10
1秒前
高贵魂幽完成签到,获得积分10
1秒前
2秒前
Sybsy完成签到 ,获得积分10
5秒前
木子完成签到,获得积分10
5秒前
大大小完成签到,获得积分10
5秒前
柒柒球完成签到,获得积分10
6秒前
大大小发布了新的文献求助20
8秒前
pterionGao完成签到 ,获得积分10
9秒前
9秒前
9秒前
CipherSage应助高贵的妙之采纳,获得30
10秒前
10秒前
Susam发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
领导范儿应助sandy采纳,获得10
13秒前
erin发布了新的文献求助10
14秒前
15秒前
哎呀发布了新的文献求助10
16秒前
普萘洛尔发布了新的文献求助20
18秒前
二呆发布了新的文献求助30
18秒前
song完成签到,获得积分10
19秒前
橙子完成签到 ,获得积分10
20秒前
Orange应助襄阳采纳,获得10
20秒前
完美世界应助冬天该很好采纳,获得10
21秒前
22秒前
乐乐应助小巧晓夏采纳,获得10
23秒前
qweerrtt完成签到,获得积分10
25秒前
LYQ完成签到 ,获得积分10
28秒前
28秒前
二汀发布了新的文献求助10
28秒前
gu发布了新的文献求助10
28秒前
HL完成签到,获得积分10
30秒前
31秒前
二呆完成签到,获得积分10
33秒前
汉堡包应助qq采纳,获得10
33秒前
35秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783242
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10237018
捐赠科研通 3043689
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126