Trichoid sensilla on honey bee proboscises as inspiration for micro-viscometers

花蜜 粘度计 粘度 蜜蜂 养蜂女孩 生物 食品科学 生物系统 材料科学 植物 复合材料 花粉
作者
Caiying Liao,Guillermo J. Amador,Xuhan Liu,Zhigang Wu,Jianing Wu
出处
期刊:Bioinspiration & Biomimetics [IOP Publishing]
卷期号:18 (1): 016012-016012 被引量:4
标识
DOI:10.1088/1748-3190/aca577
摘要

Abstract Sensing physical properties of liquids, such as viscosity, is of great significance for both biological organisms and industrial applications. For terrestrial organisms feeding on liquids, such as honey bees that forage nectar, sensing viscosity may help to determine the quality of food sources. Previous experiments showed that honey bees exhibit strong preferences for less viscous nectar; however, the physical mechanism underlying how they perceive viscosity remains unexplored. In this study, we propose that the western honey bee ( Apis mellifera L.) is capable of distinguishing viscosity using the slender trichoid sensilla emerging from a ball and socket-like joint on the proboscis. Observations of the trichoid sensilla using transmission electron microscopy reveal physical characteristics that are typical of mechanosensory structures. Additionally, we found that bees actively alter the rate at which they feed based on the liquid’s viscosity and not its sugar content, hinting at their sensing of viscosity. Through mathematical modeling, we found that the sensitivity of the biological viscometer was determined by its length, and the optimal sensitivity for a western honey bee occurs when the tongue interacts with nectar with a viscosity of 4.2 mPa·s, coinciding with the viscosities typically found in the wild. Our findings broaden insights into how honey bees adapt to varying-viscosity nectar from the perspective of mechanical sensing, and how the bee-flower partnership may be based around the optimal nectar viscosity for feeding. By understanding how bees may sense viscosity at the micrometer scale, we may motivate new technologies for micro-viscometers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助无法停下脚步采纳,获得10
2秒前
思源应助王秋婷采纳,获得10
3秒前
3秒前
3秒前
4秒前
GQ完成签到,获得积分20
4秒前
灵波发布了新的文献求助10
7秒前
YANGYANGYANG完成签到,获得积分10
7秒前
雾霭迷茫发布了新的文献求助10
8秒前
哈哈发布了新的文献求助10
8秒前
科研通AI5应助小周采纳,获得10
10秒前
10秒前
11秒前
hbhbj完成签到,获得积分10
16秒前
1111111111111完成签到,获得积分10
16秒前
fang完成签到 ,获得积分10
17秒前
丘比特应助灵波采纳,获得10
17秒前
田様应助xxx采纳,获得30
18秒前
白白圣诞发布了新的文献求助10
18秒前
19秒前
彭于晏应助热心的汽车采纳,获得10
21秒前
与梦随行2011完成签到,获得积分10
21秒前
科研通AI5应助开朗的之瑶采纳,获得10
21秒前
王秋婷发布了新的文献求助10
22秒前
FashionBoy应助哈哈采纳,获得10
24秒前
24秒前
24秒前
24秒前
帅小主发布了新的文献求助10
29秒前
Carera完成签到,获得积分10
30秒前
purple完成签到 ,获得积分10
30秒前
慕青应助lzpdsb采纳,获得10
31秒前
wuyanchi发布了新的文献求助10
31秒前
33秒前
34秒前
青蛙公主完成签到 ,获得积分10
35秒前
万能图书馆应助oh采纳,获得10
36秒前
小蘑菇应助清梦采纳,获得10
38秒前
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836326
求助须知:如何正确求助?哪些是违规求助? 3378639
关于积分的说明 10505544
捐赠科研通 3098283
什么是DOI,文献DOI怎么找? 1706415
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772417