DeepMAG: Deep reinforcement learning with multi-agent graphs for flexible job shop scheduling

计算机科学 强化学习 工作车间 调度(生产过程) 人工智能 作业车间调度 机器学习 作业调度程序 分布式计算 布线(电子设计自动化) 流水车间调度 数学优化 嵌入式系统 程序设计语言 数学 排队
作者
Jia-Dong Zhang,Zhixiang He,Wing-Ho Chan,Chi-Yin Chow
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:259: 110083-110083 被引量:34
标识
DOI:10.1016/j.knosys.2022.110083
摘要

The flexible job shop scheduling (FJSS) is important in real-world factories due to the wide applicability. FJSS schedules the operations of jobs to be executed by specific machines at the appropriate time slots based on two decision steps, namely, the job sequencing (i.e., the sequence of jobs executed on a machine) and the job routing (i.e., the route of a job to a machine). Most current studies utilize either deep reinforcement learning (DRL) or multi-agent reinforcement learning (MARL) for FJSS with a large search space. However, these studies suffer from two major limitations: no integration between DRL and MARL, and independent agents without cooperation. To this end, we propose a new model for FJSS, called DeepMAG based on Deep reinforcement learning with Multi-Agent Graphs. DeepMAG has two key contributions. (1) Integration between DRL and MARL. DeepMAG integrates DRL with MARL by associating a different agent to each machine and job. Each agent exploits DRL to find the best action on the job sequencing and routing. After a job-associated agent chooses the best machine, the job becomes a job candidate for the machine to proceed to its next operation, while a machine-associated agent selects the next job from its job candidate set to be processed. (2) Cooperative agents. A multi-agent graph is built based on the operation relationships among machines and jobs. An agent cooperates with its neighboring agents to take one cooperative action. Finally, we conduct experiments to evaluate the performance of DeepMAG and experimental results show that it outperforms the state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助野猪采纳,获得10
1秒前
1秒前
1秒前
华仔应助威武的戎采纳,获得10
2秒前
曹广秀发布了新的文献求助10
4秒前
余念发布了新的文献求助10
5秒前
meng完成签到,获得积分10
7秒前
NexusExplorer应助幸福向秋采纳,获得10
7秒前
7秒前
123完成签到,获得积分10
7秒前
Stella应助鱼鱼鱼采纳,获得30
7秒前
r41r32完成签到 ,获得积分10
12秒前
12秒前
完美世界应助金金采纳,获得10
12秒前
12秒前
immm完成签到 ,获得积分10
13秒前
碎冰果果完成签到,获得积分10
15秒前
16秒前
lxy发布了新的文献求助10
16秒前
天天快乐应助天开眼采纳,获得10
17秒前
拼搏忆文完成签到,获得积分10
18秒前
19秒前
缘起缘灭完成签到,获得积分10
19秒前
19秒前
Hilda007应助JERRY采纳,获得10
20秒前
20秒前
ZONG发布了新的文献求助10
20秒前
拼搏忆文发布了新的文献求助10
21秒前
刘子完成签到 ,获得积分10
22秒前
随意发布了新的文献求助50
22秒前
23秒前
hong发布了新的文献求助10
25秒前
Zhang_Yakun发布了新的文献求助30
25秒前
25秒前
xue完成签到,获得积分10
26秒前
26秒前
26秒前
任性问凝关注了科研通微信公众号
27秒前
小马甲应助lxy采纳,获得10
28秒前
wz完成签到,获得积分10
28秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339456
求助须知:如何正确求助?哪些是违规求助? 4476253
关于积分的说明 13930947
捐赠科研通 4371718
什么是DOI,文献DOI怎么找? 2402066
邀请新用户注册赠送积分活动 1395009
关于科研通互助平台的介绍 1366964