An Intelligent Data-Plane with a Quantized ML Model for Traffic Management

计算机科学 量化(信号处理) 前进飞机 实时计算 加速 推论 人工智能 网络数据包 算法 并行计算 计算机网络
作者
Kaiyi Zhang,Nancy Samaan,Ahmed Karmouch
标识
DOI:10.1109/noms56928.2023.10154321
摘要

Offloading some of the traffic management decision-making functionalities to intelligent data-planes (IDPs) can significantly enhance the accuracy and adaptation speed of network services. An IDP executes, at line-speed, one or more machine learning (ML) models for real-time inference and decision making. Unfortunately, existing IDP deployments either realize only a limited set of ML models such as decision trees or require substantial modifications in the switch hardware. These limitations can be attributed to the inherent scarcity of both the computational and memory resources and the strict high-speed per-packet processing demands. To address the aforementioned limitations, we propose a novel ML-based management framework, the in-network quantized ML architecture (INQ-MLA). First, INQ-MLA delegates the task of training and continuously optimizing the IDP ML model to the control-plane. The latter adopts a tailored quantization-aware training process to compensate for the effect of precision loss due to quantization. Second, INQ-MLA employs an efficient quantization mechanism to transform the trained ML model parameters (e.g., weights and activation functions outputs) from floating-point representations to smaller low precision fixed integer values that can be easily processed and stored in the data-plane. Finally, INQ-MLA ensures that the deployed ML model is integrated into the IDP pipeline by limiting all its execution operations to simplified arithmetic operations that are available in most switches. We developed a proof-of-concept implementation of our proposed architecture using P4-based switches. Experimental results demonstrate that INQ-MLA can achieve a high-level of accuracy at runtime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎觅露完成签到,获得积分10
2秒前
天天快乐应助yx采纳,获得30
3秒前
刘祥发布了新的文献求助10
4秒前
victor发布了新的文献求助10
4秒前
阮绿凝发布了新的文献求助10
6秒前
吴茂林发布了新的文献求助10
6秒前
小狗黑头发布了新的文献求助10
7秒前
Shirley发布了新的文献求助10
7秒前
7秒前
凶狠的妙柏完成签到,获得积分10
8秒前
阮绿凝完成签到,获得积分10
10秒前
Je完成签到 ,获得积分10
10秒前
Lojong发布了新的文献求助10
12秒前
CipherSage应助刘祥采纳,获得10
12秒前
大尾尾发布了新的文献求助10
14秒前
笨笨听枫完成签到 ,获得积分10
14秒前
慈祥的大船完成签到,获得积分10
15秒前
深情安青应助drfwjuikesv采纳,获得10
16秒前
SONG完成签到,获得积分10
18秒前
18秒前
fyb完成签到,获得积分10
19秒前
Owen应助雷老板采纳,获得10
20秒前
21秒前
避橙发布了新的文献求助10
22秒前
N1发布了新的文献求助10
25秒前
蛤125发布了新的文献求助10
25秒前
恸23发布了新的文献求助10
25秒前
implosion完成签到,获得积分10
27秒前
JamesPei应助佛系少年采纳,获得10
27秒前
香蕉觅云应助李洪卓采纳,获得10
28秒前
上官若男应助drfwjuikesv采纳,获得10
28秒前
29秒前
黄豆豆完成签到,获得积分10
29秒前
三三完成签到,获得积分10
30秒前
30秒前
elunxu完成签到,获得积分10
32秒前
炳楷完成签到,获得积分10
34秒前
Lojong发布了新的文献求助10
35秒前
pping完成签到,获得积分10
35秒前
英姑应助fyb采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290205
求助须知:如何正确求助?哪些是违规求助? 4441629
关于积分的说明 13827865
捐赠科研通 4324246
什么是DOI,文献DOI怎么找? 2373588
邀请新用户注册赠送积分活动 1368953
关于科研通互助平台的介绍 1332922