Korteweg–de Vries方程
类型(生物学)
订单(交换)
数学
补语(音乐)
非线性系统
一级
组合数学
数学物理
数学分析
物理
量子力学
应用数学
化学
财务
表型
基因
生物
经济
生物化学
互补
生态学
摘要
We investigate special regularity of solutions to the initial value problem associated to the nonlinear fifth order equation of KdV type. The main results show that for datum $u_{0} \in H^{s}(\mathbf{R}), F(u) \in C^{s+2}(\mathbf{R})$ with $s\geq5$, whose restriction belongs to $H^{l}((x_{0},\infty))$ and $H^{l+2}((x_{0},\infty))$ respectively, for some $l \in \mathbb{Z}^{+}$ and $x_{0}\in \mathbf{R}$, then the restriction of the corresponding solution $u(\cdot,t)$ belongs to $H^{l}((b,\infty))$ for any $b\in\mathbf{R}$ and any $t\in (0,T)$. Thus, this type of regularity travels with infinite speed to its left as time evolves. To a certain extent, our results complement the previous studies on the related aspects, and deepen the understanding of such properties for the dispersion equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI