Glycolysis and de novo fatty acid synthesis cooperatively regulate pathological vascular smooth muscle cell phenotypic switching and neointimal hyperplasia

新生内膜 血管平滑肌 糖酵解 细胞生物学 mTORC1型 新生内膜增生 生物 下调和上调 表型转换 癌症研究 化学 生物化学 内分泌学 信号转导 内科学 新陈代谢 医学 PI3K/AKT/mTOR通路 基因 再狭窄 支架 平滑肌
作者
Kaixiang Cao,Tiejun Zhang,Li Zou,Mingchuan Song,Anqi Li,Jingwei Yan,Shuai Guo,Litao Wang,Shuqi Huang,Ziling Li,Wenzhong Hou,Xiaoyan Dai,Yong Wang,Du Feng,Jun He,Xiaodong Fu,Yiming Xu
标识
DOI:10.1002/path.6052
摘要

Abstract Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a dedifferentiated (proliferative) phenotype contributes to neointima formation, which has been demonstrated to possess a tumor‐like nature. Dysregulated glucose and lipid metabolism is recognized as a hallmark of tumors but has not thoroughly been elucidated in neointima formation. Here, we investigated the cooperative role of glycolysis and fatty acid synthesis in vascular injury‐induced VSMC dedifferentiation and neointima formation. We found that the expression of hypoxia‐inducible factor‐1α (HIF‐1α) and its target 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase (PFKFB3), a critical glycolytic enzyme, were induced in the neointimal VSMCs of human stenotic carotid arteries and wire‐injured mouse carotid arteries. HIF‐1α overexpression led to elevated glycolysis and resulted in a decreased contractile phenotype while promoting VSMC proliferation and activation of the mechanistic target of rapamycin complex 1 (mTORC1). Conversely, silencing Pfkfb3 had the opposite effects. Mechanistic studies demonstrated that glycolysis generates acetyl coenzyme A to fuel de novo fatty acid synthesis and mTORC1 activation. Whole‐transcriptome sequencing analysis confirmed the increased expression of PFKFB3 and fatty acid synthetase (FASN) in dedifferentiated VSMCs. More importantly, FASN upregulation was observed in neointimal VSMCs of human stenotic carotid arteries. Finally, interfering with PFKFB3 or FASN suppressed vascular injury‐induced mTORC1 activation, VSMC dedifferentiation, and neointima formation. Together, this study demonstrated that PFKFB3‐mediated glycolytic reprogramming and FASN‐mediated lipid metabolic reprogramming are distinctive features of VSMC phenotypic switching and could be potential therapeutic targets for treating vascular diseases with neointima formation. © 2023 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦子发布了新的文献求助30
刚刚
后夜完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
诚心涵柳发布了新的文献求助10
2秒前
Lin完成签到,获得积分10
2秒前
2秒前
ZFS应助希喵子采纳,获得60
2秒前
碧蓝贞完成签到,获得积分10
3秒前
Orange应助FUJIE采纳,获得10
3秒前
kove0928完成签到,获得积分10
3秒前
赵妍驳回了思源应助
3秒前
3秒前
4秒前
李爱国应助南北采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
Hofer完成签到 ,获得积分20
6秒前
彭于晏应助蔚蓝采纳,获得10
6秒前
JamesPei应助somous采纳,获得10
7秒前
机智的觅风发布了新的文献求助100
8秒前
sea完成签到 ,获得积分10
8秒前
海棠先雪完成签到,获得积分10
9秒前
9秒前
香草可樂发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
阿微发布了新的文献求助10
10秒前
秒文献是一种天赋完成签到 ,获得积分10
10秒前
yyyyy发布了新的文献求助10
11秒前
mark完成签到,获得积分10
11秒前
HRC发布了新的文献求助10
11秒前
酷波er应助醉眠采纳,获得10
12秒前
赘婿应助yyy采纳,获得10
13秒前
13秒前
13秒前
14秒前
学术小鱼关注了科研通微信公众号
14秒前
zhonglv7应助常乐采纳,获得10
14秒前
西门如豹发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249