One-Shot Multiple Object Tracking With Robust ID Preservation

计算机科学 能见度 人工智能 一致性(知识库) 判别式 计算机视觉 特征(语言学) 视频跟踪 特征学习 模棱两可 模式识别(心理学) 对象(语法) 语言学 哲学 物理 光学 程序设计语言
作者
Weiyi Lv,Ning Zhang,Junjie Zhang,Dan Zeng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4473-4488 被引量:5
标识
DOI:10.1109/tcsvt.2023.3339609
摘要

Maintaining identity consistency and avoiding ID-switch during tracking is one of the primary focuses of multiple object tracking (MOT). One-shot MOT methods which jointly learn the detection and tracking models in one single network (hence namely, one-shot) have achieved promising results in tracking accuracy and speed. However, their capabilities of maintaining ID consistency are somehow weakened. The reason for this weakened ID consistency is two-fold: (1) the ID features learned by one-shot methods are not discriminative enough due to their heatmap-based single-location representation. (2) severe occlusion in the MOT scene leads to feature ambiguity and high ID-switch. In this paper, we propose a one-shot MOT system with strong ID consistency called PID-MOT (Preserved ID MOT). Specifically, we devise a visibility branch to predict the object occlusion level, and a predicted visibility map will be used in both Feature Refinement Model (FRM) and a visibility-guided two-stage association strategy (VGTAS). FRM is designed to strengthen the location-based features and enrich the identity information. VGTAS is proposed for tackling objects with high and low visibility separately. In addition, we initialize the parameters of our model by training on the recently emerged abundant synthetic MOTSynth dataset from scratch rather than the commonly used COCO dataset for full training. Finally, we carry out our method on the commonly used MOT datasets and the experimental results demonstrate that the proposed PID-MOT achieves especially good performances in ID F1 score (IDF1) and ID-Switch (IDS) compared with other state-of-the-art one-shot trackers, with comparable overall HOTA/MOTA performance. The code is available at https://github.com/Kroery/PIDMOT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈梦平发布了新的文献求助10
2秒前
传奇3应助活力盼晴采纳,获得10
2秒前
伟@完成签到,获得积分10
2秒前
渤大彭于晏完成签到,获得积分10
3秒前
一地狗粮完成签到,获得积分10
3秒前
cdercder应助沐风采纳,获得10
4秒前
wei完成签到,获得积分10
4秒前
yan发布了新的文献求助10
5秒前
感动的友容完成签到,获得积分10
5秒前
Luminous1123发布了新的文献求助10
6秒前
华仔应助过儿采纳,获得10
7秒前
8秒前
SciGPT应助momo采纳,获得10
9秒前
9秒前
李健的小迷弟应助老王采纳,获得10
9秒前
lym关闭了lym文献求助
10秒前
10秒前
12秒前
NexusExplorer应助zxd采纳,获得10
12秒前
moxuyio发布了新的文献求助10
12秒前
12秒前
无奈的天玉完成签到,获得积分10
12秒前
Luminous1123完成签到,获得积分10
12秒前
13秒前
Ava应助Joy采纳,获得30
14秒前
14秒前
wq发布了新的文献求助30
15秒前
15秒前
17秒前
离个大谱发布了新的文献求助10
18秒前
tym完成签到 ,获得积分10
19秒前
过儿发布了新的文献求助10
19秒前
咕咕咕完成签到,获得积分10
20秒前
852应助猪猪hero采纳,获得10
20秒前
花溪发布了新的文献求助20
21秒前
活力盼晴发布了新的文献求助10
22秒前
小垃圾发布了新的文献求助10
23秒前
23秒前
畅快的鸡翅完成签到 ,获得积分10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838238
求助须知:如何正确求助?哪些是违规求助? 3380537
关于积分的说明 10514786
捐赠科研通 3100091
什么是DOI,文献DOI怎么找? 1707333
邀请新用户注册赠送积分活动 821664
科研通“疑难数据库(出版商)”最低求助积分说明 772890