Open Set Domain Adaptation for Electronic Nose Drift Compensation on Uncertain Category Data

子空间拓扑 稳健性(进化) 计算机科学 概念漂移 电子鼻 人工智能 补偿(心理学) 模式识别(心理学) 集合(抽象数据类型) 适应(眼睛) 数据挖掘 数据流挖掘 心理学 生物化学 化学 物理 精神分析 光学 基因 程序设计语言
作者
Tao Liu,Yiru Wang,Haotong Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3348893
摘要

An electronic nose (e-nose) is an intelligent sensing device with a gas sensor array and corresponding recognition models. The gas sensor drift is a critical issue of an e-nose system, degrading the recognition performance in long-term detections. Current drift suppression methods have been designed on closed-set data considering identical category compositions between drift and training data. However, this assumption cannot be preserved in out-of-laboratory scenes due to the unexpected appearance of unknown category odors in the training and drift data. The category compositions of drift and training data become uncertain with each other. Thus, we have proposed an open-set domain adaptation (OSDA) model to enhance the robustness of drift suppression models on such open-set data. The proposed methodology can obtain a common subspace with aligning known and separating unknown categories. Accordingly, the first- and second-order statistics are utilized in domain adaptation (DA) considerations. We have also introduced an open-set labeler for drift category recognition and unknown category discrimination. We chose two gas sensor drift datasets to evaluate the model performance. The experimental results indicate that our proposed method performs better drift compensation on open-set data than the other adopted DA methods. We have further explored the learning term effectiveness, parameter sensitivity, and subspace dimension optimization to verify the characteristics of the proposed methodology. As a result, it is proved that the proposed model can cope well with the uncertain category problem in e-nose drift compensation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
压垮稻草的最后一只骆驼完成签到,获得积分10
1秒前
华仔应助仁爱的狗采纳,获得10
2秒前
rover发布了新的文献求助10
2秒前
marksman完成签到,获得积分10
3秒前
hikari发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Freeasy完成签到 ,获得积分10
4秒前
4秒前
5秒前
幸运的果子狸完成签到,获得积分10
5秒前
阿狸完成签到,获得积分10
5秒前
cubie001完成签到,获得积分10
6秒前
wanci应助科研通管家采纳,获得10
7秒前
孤独绮梅完成签到 ,获得积分10
7秒前
李密完成签到 ,获得积分10
7秒前
7秒前
时尚语蓉发布了新的文献求助10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
倪妮发布了新的文献求助10
7秒前
xzy998应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得30
8秒前
Owen应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
xzy998应助科研通管家采纳,获得20
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得30
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
思源应助trq采纳,获得10
10秒前
10秒前
juligulu发布了新的文献求助30
11秒前
orixero应助rover采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259489
求助须知:如何正确求助?哪些是违规求助? 4421116
关于积分的说明 13761878
捐赠科研通 4294896
什么是DOI,文献DOI怎么找? 2356644
邀请新用户注册赠送积分活动 1353069
关于科研通互助平台的介绍 1314071