Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy

对接(动物) 小桶 药理学 计算生物学 糖尿病肾病 小檗碱 医学 基因 生物 基因表达 生物化学 遗传学 转录组 护理部
作者
Xueqin Zhang,Peng Chao,Lei Zhang,Jinyu Lu,Aiping Yang,Hong Jiang,Chen Lü
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-17
标识
DOI:10.1080/07391102.2023.2294165
摘要

Diabetic nephropathy (DN) is one of the most feared complications of diabetes and key cause of end-stage renal disease (ESRD). Berberis integerrima has been widely used to treat diabetic complications, but exact molecular mechanism is yet to be discovered. Data on active ingredients of B. integerrima and target genes of both diabetic nephropathy and B.integerrima were obtained from public databases. Common results between B. integerrima and DN targets were used to create protein-protein interaction (PPI) network using STRING database and exported to Cytoscape software for the selection of hub genes based on degree of connectivity. Future, PPI network between constituents and overlapping targets was created using Cytoscape to investigate the network pharmacological effects of B. integerrima on DN. KEGG pathway analysis of core genes exposed their involvement in excess glucose-activated signaling pathway. Then, expression of core genes was validated through machine learning classifiers. Finally, PyRx and AMBER18 software was used for molecular docking and simulation. We found that Armepavine, Berberine, Glaucine, Magnoflorine, Reticuline, Quercetin inhibits the growth of diabetic nephropathy by affecting ICAM1, PRKCB, IKBKB, KDR, ALOX5, VCAM1, SYK, TBXA2R, LCK, and F3 genes. Machine learning revealed SYK and PRKCB as potential genes that could use as diagnostic biomarkers against DN. Furthermore, docking and simulation analysis showed the binding affinity and stability of the active compound with target genes. Our study revealed that B. integerrima has preventive effect on DN by acting on glucose-activated signaling pathways. However, experimental studies are needed to reveal biosafety profiles of B. integerrima in DN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goo发布了新的文献求助10
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
mdjinij发布了新的文献求助10
2秒前
昏睡的蟠桃应助科研通管家采纳,获得200
2秒前
yar应助科研通管家采纳,获得10
3秒前
kk99123应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
李健的小迷弟应助moonlin采纳,获得10
4秒前
情怀应助饱满的妙梦采纳,获得10
5秒前
Calvin发布了新的文献求助10
5秒前
6秒前
福娃完成签到,获得积分10
6秒前
7秒前
oneday发布了新的文献求助10
7秒前
飞翔发布了新的文献求助30
9秒前
10秒前
10秒前
luyang发布了新的文献求助10
11秒前
谦让的鞯发布了新的文献求助10
11秒前
Totoro发布了新的文献求助300
13秒前
苏天洋应助qmhx采纳,获得10
13秒前
柏林寒冬应助黎明采纳,获得10
15秒前
15秒前
程大海完成签到,获得积分10
15秒前
15秒前
玄武岩应助于铭涵采纳,获得20
17秒前
科研通AI2S应助Mo采纳,获得10
19秒前
学术地瓜完成签到 ,获得积分10
20秒前
23秒前
自由平文完成签到 ,获得积分10
23秒前
大鹏应助Vandokey采纳,获得10
23秒前
园园完成签到 ,获得积分10
23秒前
25秒前
25秒前
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4096566
求助须知:如何正确求助?哪些是违规求助? 3634404
关于积分的说明 11520887
捐赠科研通 3345042
什么是DOI,文献DOI怎么找? 1838382
邀请新用户注册赠送积分活动 905944
科研通“疑难数据库(出版商)”最低求助积分说明 823409