已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT‐based radiomics for the identification of colorectal cancer liver metastases sensitive to first‐line irinotecan‐based chemotherapy

伊立替康 医学 结直肠癌 化疗 无线电技术 内科学 放射科 肿瘤科 癌症
作者
Qi Wei,Jing Yang,Longbo Zheng,Yun Lu,Ruiqing Liu,Yiheng Ju,Tianye Niu,Dongsheng Wang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2705-2714 被引量:2
标识
DOI:10.1002/mp.16325
摘要

Chemosensitivity prediction in colorectal cancer patients with liver metastases has remained a research hotspot. Radiomics can extract features from patient imaging, and deep learning or machine learning can be used to build models to predict patient outcomes prior to chemotherapy.In this study, the radiomics features and clinical data of colorectal cancer patients with liver metastases were used to predict their sensitivity to irinotecan-based chemotherapy.A total of 116 patients with unresectable colorectal cancer liver metastases who received first-line irinotecan-based chemotherapy from January 2015 to January 2020 in our institution were retrospectively collected. Overall, 116 liver metastases were randomly divided into training (n = 81) and validation (n = 35) cohorts in a 7:3 ratio. The effect of chemotherapy was determined based on Response Evaluation Criteria in Solid Tumors. The lesions were divided into response and nonresponse groups. Regions of interest (ROIs) were manually segmented, and sample sizes of 1×1×1, 3×3×3, 5×5×5 mm3 were used to extract radiomics features. The relevant features were identified through Pearson correlation analysis and the MRMR algorithm, and the clinical data were merged into the artificial neural network. Finally, the p-model was obtained after repeated learning and testing.The p-model could distinguish responders in the training (area under the curve [AUC] 0.754, 95% CI 0.650-0.858) and validation cohorts (AUC 0.752 95% CI 0.581-0.904). AUC values of the pure image group model are 0.720 (95% CI 0.609-0.827) and 0.684 (95% CI 0.529-0.890) for the training and validation cohorts respectively. As for the clinical data model, AUC values of the training and validation cohorts are 0.638 (95% CI 0.500-0.757) and 0.545 (95% CI 0.360-0.785), respectively. The performances of the latter two are less than that of the former.The p-model has the potential to discriminate colorectal cancer patients sensitive to chemotherapy. This model holds promise as a noninvasive tool to predict the response of colorectal liver metastases to chemotherapy, allowing for personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niuniu999发布了新的文献求助30
1秒前
科研通AI6应助libangle采纳,获得10
3秒前
sily科研发布了新的文献求助30
4秒前
苗条青槐发布了新的文献求助10
7秒前
zcbb完成签到,获得积分10
8秒前
MinQi完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
guo应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
lzz关注了科研通微信公众号
10秒前
11秒前
慕容雨文发布了新的文献求助10
13秒前
14秒前
不配.应助sily科研采纳,获得30
14秒前
qjw发布了新的文献求助10
14秒前
侦察兵发布了新的文献求助10
15秒前
niuniu999完成签到,获得积分20
15秒前
长林发布了新的文献求助10
16秒前
16秒前
科研通AI5应助lv采纳,获得10
18秒前
zh发布了新的文献求助10
22秒前
23秒前
等的你呢完成签到 ,获得积分10
23秒前
24秒前
可可完成签到 ,获得积分10
25秒前
慕容雨文完成签到,获得积分10
25秒前
顾矜应助昭奚采纳,获得30
27秒前
脑洞疼应助脑子还给我采纳,获得10
27秒前
斑鸠津发布了新的文献求助20
28秒前
29秒前
30秒前
31秒前
落寞松鼠完成签到,获得积分10
31秒前
32秒前
白榆完成签到 ,获得积分10
32秒前
lv完成签到,获得积分10
33秒前
长林完成签到,获得积分20
35秒前
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4228508
求助须知:如何正确求助?哪些是违规求助? 3761998
关于积分的说明 11823427
捐赠科研通 3422433
什么是DOI,文献DOI怎么找? 1878121
邀请新用户注册赠送积分活动 931280
科研通“疑难数据库(出版商)”最低求助积分说明 839117