Lightweight Real-Time Semantic Segmentation Network With Efficient Transformer and CNN

计算机科学 分割 变压器 人工智能 自然语言处理 计算机视觉 实时计算 语音识别 工程类 电压 电气工程
作者
Guoan Xu,Juncheng Li,Guangwei Gao,Huimin Lu,Jian Yang,Dong Yue
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 15897-15906 被引量:37
标识
DOI:10.1109/tits.2023.3248089
摘要

In the past decade, convolutional neural networks (CNNs) have shown prominence for semantic segmentation. Although CNN models have very impressive performance, the ability to capture global representation is still insufficient, which results in suboptimal results. Recently, Transformer achieved huge success in NLP tasks, demonstrating its advantages in modeling long-range dependency. Recently, Transformer has also attracted tremendous attention from computer vision researchers who reformulate the image processing tasks as a sequence-to-sequence prediction but resulted in deteriorating local feature details. In this work, we propose a lightweight real-time semantic segmentation network called LETNet. LETNet combines a U-shaped CNN with Transformer effectively in a capsule embedding style to compensate for respective deficiencies. Meanwhile, the elaborately designed Lightweight Dilated Bottleneck (LDB) module and Feature Enhancement (FE) module cultivate a positive impact on training from scratch simultaneously. Extensive experiments performed on challenging datasets demonstrate that LETNet achieves superior performances in accuracy and efficiency balance. Specifically, It only contains 0.95M parameters and 13.6G FLOPs but yields 72.8% mIoU at 120 FPS on the Cityscapes test set and 70.5% mIoU at 250 FPS on the CamVid test dataset using a single RTX 3090 GPU. Source code will be available at https://github.com/IVIPLab/LETNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33完成签到,获得积分10
刚刚
希望天下0贩的0应助xfyxxh采纳,获得10
1秒前
1秒前
NIUBEN发布了新的文献求助10
1秒前
yueyue3SCI完成签到,获得积分10
1秒前
背后如彤完成签到,获得积分10
1秒前
ding应助stobely采纳,获得10
1秒前
2秒前
zll完成签到 ,获得积分10
2秒前
Morning_King完成签到,获得积分20
2秒前
我是老大应助zheng采纳,获得10
2秒前
日川冈坂完成签到 ,获得积分10
2秒前
chen发布了新的文献求助10
2秒前
meng136281发布了新的文献求助10
2秒前
快乐小狗完成签到,获得积分10
3秒前
SciGPT应助三国杀启动采纳,获得10
3秒前
3秒前
3秒前
scc发布了新的文献求助10
4秒前
4秒前
happy完成签到,获得积分10
4秒前
直率的笑翠完成签到 ,获得积分10
4秒前
给钱谢谢完成签到,获得积分10
4秒前
LULU完成签到,获得积分10
5秒前
6秒前
等待的航空完成签到 ,获得积分10
6秒前
从容芮完成签到,获得积分0
7秒前
传奇3应助hj采纳,获得10
7秒前
SYLH应助hj采纳,获得10
7秒前
赘婿应助Pony采纳,获得10
7秒前
7秒前
8秒前
8秒前
喵喵的鱼完成签到 ,获得积分10
8秒前
冷清之完成签到 ,获得积分10
9秒前
Aubrey完成签到,获得积分10
11秒前
11秒前
李爱国应助颜靖仇采纳,获得10
11秒前
SYLH应助颜靖仇采纳,获得10
11秒前
SYLH应助颜靖仇采纳,获得10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747