神经形态工程学
MNIST数据库
纳米片
晶体管
材料科学
边缘计算
GSM演进的增强数据速率
计算机科学
计算机体系结构
纳米技术
电子工程
光电子学
人工神经网络
电气工程
电压
人工智能
工程类
作者
Jeechan Yoon,Bolim You,Yuna Kim,Jina Bak,Mino Yang,Jihyang Park,Myung Gwan Hahm,Moonsang Lee
标识
DOI:10.1021/acsami.3c00254
摘要
While neuromorphic computing can define a new era for next-generation computing architecture, the introduction of an efficient synaptic transistor for neuromorphic edge computing still remains a challenge. Here, we envision an atomically thin 2D Te synaptic device capable of achieving a desirable neuromorphic edge computing design. The hydrothermally grown 2D Te nanosheet synaptic transistor apparently mimicked the biological synaptic nature, exhibiting 100 effective multilevel states, a low power consumption of ∼110 fJ, excellent linearity, and short-/long-term plasticity. Furthermore, the 2D Te synaptic device achieved reconfigurable MNIST recognition accuracy characteristics of 88.2%, even after harmful detergent environment infection. We believe that this work serves as a guide for developing futuristic neuromorphic edge computing.
科研通智能强力驱动
Strongly Powered by AbleSci AI