Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN). Part III: Enhancement of Scanco micro-CT images of granodiorite rocks using a 3D convolutional neural network super-resolution algorithm

卷积神经网络 人工智能 图像分辨率 分辨率(逻辑) 样品(材料) 计算机科学 计算机视觉 图像质量 对比度(视觉) 模式识别(心理学) 断层摄影术 遥感 地质学 图像(数学) 光学 物理 热力学
作者
Alexandra Roslin,Maksim Lebedev,Travis Mitchell,Italo Onederra,Christopher Leonardi
出处
期刊:Minerals Engineering [Elsevier BV]
卷期号:195: 108028-108028 被引量:1
标识
DOI:10.1016/j.mineng.2023.108028
摘要

X-ray micro-computed tomography (micro-CT) is a standard method to perform three-dimensional analysis of the internal structure of a rock sample. 3D X-ray microscopes, such as those from the XRadia Versa family, provide images of high resolution and contrast. Medical scanning machines can also be used for scanning rock samples to reduce operational cost and time, but they generally provide poorer spatial resolution and contrast compared to 3D X-ray microscopes. Recent success in implementing deep learning algorithms to enhance image quality demonstrated that, in some cases, the application of convolutional neural network (CNN) models might significantly enhance the resolution of the micro-CT images. In this research, a super-resolution technique employing the U-Net 3D CNN architecture is applied to enhance the resolution of granodiorite rock sample images obtained by two different 3D scanning machines. The high-resolution dataset was obtained using the XRadia Versa XRM-500 microscope. It contained images with nominal resolutions of 10.3 and 5μm. The low-resolution scanning was performed using a Scanco medical μ CT 50 machine, and the images from this dataset had a nominal resolution of 10.3μm. Several models were created to enhance the quality of the low-resolution images, and the results were analysed. It was observed that super-resolution processing could significantly improve the low-resolution micro-CT image quality and suppress noise that appeared on medical images. The results presented in this study are of particular interest and value to geoscientists that use medical scanners to study the structure of rock samples at large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢咖啡完成签到,获得积分10
刚刚
洋洋爱吃枣完成签到 ,获得积分10
1秒前
哇哈哈哈完成签到,获得积分10
1秒前
1秒前
aaa完成签到,获得积分10
2秒前
semiaa完成签到,获得积分10
2秒前
wuzongze完成签到,获得积分10
2秒前
小胜完成签到 ,获得积分10
2秒前
lchenbio发布了新的文献求助10
3秒前
伶俐的平蓝完成签到,获得积分10
4秒前
思源应助zyy采纳,获得10
4秒前
ding应助李健春采纳,获得10
4秒前
筱筱完成签到 ,获得积分10
5秒前
5秒前
阉太狼完成签到,获得积分10
5秒前
Taro完成签到 ,获得积分10
5秒前
5秒前
123关注了科研通微信公众号
6秒前
强砸发布了新的文献求助10
6秒前
meilongyong完成签到,获得积分10
7秒前
moumou完成签到,获得积分10
7秒前
7秒前
Wzh发布了新的文献求助10
8秒前
xia完成签到,获得积分10
8秒前
椰丝豆沙完成签到,获得积分10
8秒前
10秒前
进击的小胳膊完成签到,获得积分10
10秒前
郭mm完成签到 ,获得积分10
10秒前
虾哥发布了新的文献求助10
10秒前
善学以致用应助ddz采纳,获得10
11秒前
心灵美的大山完成签到,获得积分10
12秒前
科研猫猫完成签到,获得积分10
13秒前
whitebird完成签到,获得积分10
13秒前
小软完成签到,获得积分20
13秒前
崔尔蓉完成签到,获得积分10
13秒前
13秒前
13秒前
DJ完成签到,获得积分10
13秒前
轨道交通振动与噪声小白完成签到,获得积分10
13秒前
龙傲天完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359640
关于积分的说明 10403733
捐赠科研通 3077466
什么是DOI,文献DOI怎么找? 1690304
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781