Deep Study on Fouling Modelling of Ultrafiltration Membranes Used for OMW Treatment: Comparison Between Semi-empirical Models, Response Surface, and Artificial Neural Networks

结垢 超滤(肾) 废水 响应面法 膜污染 人工神经网络 经验模型 色谱法 化学 生物系统 材料科学 环境工程 工程类 人工智能 计算机科学 模拟 生物化学 生物
作者
Magdalena Cifuentes-Cabezas,José Luis Bohórquez-Zurita,Sandra Gil-Herrero,María‐Cinta Vincent‐Vela,J.A. Mendoza‐Roca,Silvia Álvarez‐Blanco
出处
期刊:Food and Bioprocess Technology [Springer Nature]
卷期号:16 (10): 2126-2146 被引量:22
标识
DOI:10.1007/s11947-023-03033-0
摘要

Abstract Olive oil production generates a large amount of wastewater called olive mill wastewater. This paper presents the study of the effect of transmembrane pressure and cross flow velocity on the decrease in permeate flux of different ultrafiltration membranes (material and pore size) when treating a two-phase olive mill wastewater (olive oil washing wastewater). Both semi-empirical models (Hermia models adapted to tangential filtration, combined model, and series resistance model), as well as statistical and machine learning methods (response surface methodology and artificial neural networks), were studied. Regarding the Hermia model, despite the good fit, the main drawback is that it does not consider the possibility that these mechanisms occur simultaneously in the same process. According to the accuracy of the fit of the models, in terms of R 2 and SD, both the series resistance model and the combined model were able to represent the experimental data well. This indicates that both cake layer formation and pore blockage contributed to membrane fouling. The inorganic membranes showed a greater tendency to irreversible fouling, with higher values of the R a /R T (adsorption/total resistance) ratio. Response surface methodology ANOVA showed that both cross flow velocity and transmembrane pressure are significant variables with respect to permeate flux for all membranes studied. Regarding artificial neural networks, the tansig function presented better results than the selu function, all presenting high R 2 , ranging from 0.96 to 0.99. However, the comparison of all the analyzed models showed that depending on the membrane, one model fits better than the others. Finally, through this work, it was possible to provide a better understanding of the data modelling of different ultrafiltration membranes used for the treatment of olive mill wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyuki发布了新的文献求助10
1秒前
一寒完成签到 ,获得积分10
1秒前
Pendulium发布了新的文献求助10
1秒前
1秒前
蚊蚊爱读书应助yikyike一颗采纳,获得20
1秒前
成就万仇发布了新的文献求助20
2秒前
2秒前
3秒前
深情安青应助欢呼的艳采纳,获得10
4秒前
4秒前
科研通AI6应助落后老四采纳,获得10
4秒前
小二郎应助哈哈悦采纳,获得10
5秒前
5秒前
6秒前
311发布了新的文献求助10
6秒前
兴十一发布了新的文献求助10
7秒前
彭于晏应助谦让谷菱采纳,获得10
8秒前
pluto应助予豪采纳,获得10
8秒前
香香香发布了新的文献求助10
8秒前
完美世界应助nuli采纳,获得30
8秒前
kids发布了新的文献求助10
8秒前
852应助阿正电化学采纳,获得10
9秒前
nikonikoni完成签到,获得积分10
10秒前
10秒前
wxdbb发布了新的文献求助10
10秒前
小蘑菇应助韭菜采纳,获得10
11秒前
11秒前
11秒前
在水一方应助司空珩采纳,获得10
12秒前
12秒前
12秒前
12秒前
mookie发布了新的文献求助10
12秒前
13秒前
Hello应助Pendulium采纳,获得10
14秒前
aichan发布了新的文献求助10
14秒前
Caleb完成签到,获得积分10
15秒前
15秒前
zxvcbnm发布了新的文献求助10
15秒前
鲤鱼水桃发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593772
求助须知:如何正确求助?哪些是违规求助? 4679592
关于积分的说明 14810710
捐赠科研通 4644771
什么是DOI,文献DOI怎么找? 2534653
邀请新用户注册赠送积分活动 1502712
关于科研通互助平台的介绍 1469375