清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quantification of Neoantigen-Mediated Immunoediting in Cancer Evolution—Reply

突变 下调和上调 公制(单位) 生物 免疫系统 遗传学 基因 突变率 癌症 免疫编辑 计算生物学 免疫疗法 运营管理 经济
作者
Tao Wu,Kaixuan Diao,Xuesong Liu
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (6): 973-973
标识
DOI:10.1158/0008-5472.can-22-3218
摘要

To investigate the neoantigen-mediated immune elimination signal, Wu and colleagues developed ESCCF metric (1). Using this ESCCF metric, Wu and colleagues demonstrate the existence of neoantigen-mediated tumor elimination signal, and this conclusion directly contradicts with the Van den Eynden and colleagues study, which reports lack of neoantigen depletion signal in untreated cancer genome (2).The most important metric developed by the Wu and colleagues study is ESCCF, and the ESRNA metric questioned by Claeys and Van den Eynden (3) is a by-product of the Wu and colleagues study, and this ESRNA signal represents one of the mechanisms employed by cancer cells to escape immune surveillance, and the other immune escape mechanisms include antigen presentation pathway downregulation and upregulation of the expression of immune suppressive molecules, including PD-L1, CTLA4, etc.Claeys and Van den Eynden provide no evidence to argue against the ESCCF metric; however, they show evidence to question the ESRNA metric (3). Their evidence is based on simulations using The Cancer Genome Atlas (TCGA) or GTEx datasets; however, their simulation process is biased in the following aspects: (i) In their simulations, the expressions of all genes are fixed and do not change according to the mutation status, and this assumption is violated, because mutation can influence the expression of target genes. (ii) The mutations are classified into 96 types based on the nucleotide alterations and also the flanking nucleotides, and the IC50 values of different mutation types are not the same. The distribution of these mutation types is biased in their simulated datasets (Supplementary Fig. S1A). (iii) In actual TCGA dataset, mutations tend to happen more frequently in nonexpressed genes, while in their simulated TCGA dataset, mutations tend to happen more in expressed genes (Supplementary Fig. 1B). (iv) Their GTEx dataset has an additional problem, because the expressions of genes of all samples of the same tissue are the same in this dataset, disregarding the mutation status or sample status. The above-mentioned bias in their simulation process could explain why they detect ESRNA signal in simulated datasets.For ESRNA quantification, because different genes naturally have different expression levels, to compare the expression difference between immunogenic and immunogenic mutations is usually not a simple task. ESCCF quantification will not be similarly influenced as ESRNA, because the cancer cell fraction (CCF) is not influenced by gene expression or other known factors, and ESCCF represents a robust and accurate tool for immunoediting elimination signal quantification.As to the ESCCF signal, Claeys and Van den Eynden could not provide evidence to argue against it. And this ESCCF metric is directly comparable with the neoantigen depletion signal investigated in Van den Eynden and colleagues study (2). In Van den Eynden and colleagues study, HLA-binding mutation ratio (HBMR) was proposed as a metric to quantify neoantigen depletion signal; however, as reported in a preprint (bioRxiv 2020.05.11.089540), the design of this HBMR metric is problematic, and it is not unexpected that they could not detect neoantigen depletion signal using their HBMR method. On the basis of our additional unpublished data, this ESCCF signal exists even when using neoantigens predicted by HLA-II–related immunogenicity algorithms, suggesting the robustness of this ESCCF metric. In conclusion, the neoantigen enrichment scores developed in the Wu and colleagues study represent an innovative and robust approach to quantify immunoediting signal.See the original Letter to the Editor, p. 971No disclosures were reported.The authors thank ShanghaiTech University high performance computing public service platform for computing services. This work was supported by Natural science foundation of Shanghai (21ZR1442400 to X.-S. Liu).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz321完成签到,获得积分10
45秒前
顺shun完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
蜡笔小z完成签到 ,获得积分10
1分钟前
会会完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
启程完成签到 ,获得积分10
1分钟前
1分钟前
Trevor2021发布了新的文献求助10
1分钟前
piao完成签到 ,获得积分10
2分钟前
惊鸿H完成签到 ,获得积分10
2分钟前
xiaoyi完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
小吕同学完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
juan完成签到 ,获得积分0
3分钟前
迅速千愁完成签到 ,获得积分10
3分钟前
3分钟前
jiabu完成签到 ,获得积分10
3分钟前
xmf发布了新的文献求助10
3分钟前
3分钟前
yangpengbo完成签到,获得积分20
3分钟前
浚稚完成签到 ,获得积分10
4分钟前
yangpengbo发布了新的文献求助10
4分钟前
研友_LN25rL完成签到,获得积分10
4分钟前
善学以致用应助青山采纳,获得10
4分钟前
英俊的铭应助yangpengbo采纳,获得10
4分钟前
ahh完成签到 ,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得20
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
一只不受管束的小狸Miao完成签到 ,获得积分10
5分钟前
洗衣液谢完成签到 ,获得积分10
5分钟前
黄乐丹完成签到 ,获得积分10
5分钟前
Ava应助xmf采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685645
关于积分的说明 14838739
捐赠科研通 4672983
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965