医学
胶质母细胞瘤
脑癌
危险分层
肿瘤科
内科学
临床试验
分层(种子)
脑瘤
癌症
医学物理学
病理
癌症研究
发芽
种子休眠
生物
植物
休眠
作者
Hamed Akbari,Spyridon Bakas,Chiharu Sako,Anahita Fathi Kazerooni,Javier Villanueva-Meyer,José García,Elizabeth Mamourian,Fang Liu,Quy Cao,Russell T. Shinohara,Ujjwal Baid,Alexander Getka,Sarthak Pati,Ashish Singh,Evan Calabrese,Susan Chang,Jeffrey D. Rudie,Aristeidis Sotiras,Pamela LaMontagne,Daniel S. Marcus
出处
期刊:Neuro-oncology
[Oxford University Press]
日期:2024-12-12
卷期号:27 (4): 1102-1115
被引量:4
标识
DOI:10.1093/neuonc/noae260
摘要
Abstract Background Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification. Methods We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan–Meier analysis (Cox proportional model and hazard ratios [HR]). Results The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I–II and I–III of 1.62 (95% CI: 1.43–1.84, P < .001) and 3.48 (95% CI: 2.94–4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort. Conclusions Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.
科研通智能强力驱动
Strongly Powered by AbleSci AI