Strain distribution prediction in UHPC beams using deep learning model

拉伤 结构工程 深度学习 分布(数学) 材料科学 计算机科学 工程类 人工智能 数学 生物 解剖 数学分析
作者
Xuebing Zhang,Baikuang Chen,Zhizhou Zheng,Xiaochun Liu,Zhizhan Chen,Jun Cao,Tianyun Zhang,Xiaonan Xie,Binwei Gao,Ping Xiang
出处
期刊:Structural Concrete [Wiley]
卷期号:26 (1): 643-657 被引量:8
标识
DOI:10.1002/suco.202400055
摘要

Abstract Over the last three decades, ultra‐high‐performance concrete (UHPC) has emerged as a highly innovative cementitious engineering material. This paper utilizes a distributed fiber optic sensor based on optical frequency domain reflectometry (OFDR) combined with the deep learning model to monitor and predict the strain distribution in UHPC T‐beams subjected to two point bending experiment. These sensors are deployed on the side surfaces of the UHPC T‐beams to capture the strain distribution when subjected to vertical loads, facilitating the determination of crack locations based on strain distribution peaks. While time series modeling is widely used in civil engineering to monitor potential damage using sensor data, its application in tracking and predicting known cracks is less explored. To address this gap, a Long Short‐Term Memory (LSTM) neural network model is developed to forecast the increase in the peak value of the strain distribution prior to structural damage, thus predicting crack initiation. The accuracy of the proposed LSTM model in predicting the UHPC strain distribution was thoroughly investigated. The results demonstrate excellent agreement between the predicted strain distributions and those detected by the ODISI 6000 monitoring system. The root‐mean‐square errors of the model‐predicted strains are generally below 10 με, with an average coefficient of determination ( R 2 ) reaching up to 98%, indicating a high degree of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
杨一发布了新的文献求助20
1秒前
科研通AI2S应助w王采纳,获得10
1秒前
小聖发布了新的文献求助10
1秒前
Hank完成签到,获得积分10
1秒前
2秒前
Leonard_Canon发布了新的文献求助10
2秒前
进步完成签到,获得积分10
3秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
yznfly应助科研通管家采纳,获得80
4秒前
无花果应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Takahara2000应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
赘婿应助林水程采纳,获得10
6秒前
呆萌的可乐完成签到,获得积分20
7秒前
科目三应助黎日新采纳,获得10
8秒前
9秒前
Lucas应助yuzi采纳,获得20
9秒前
9秒前
顺心翠丝完成签到,获得积分10
9秒前
余生完成签到,获得积分10
9秒前
zhouzhou发布了新的文献求助10
10秒前
King发布了新的文献求助10
11秒前
张海新发布了新的文献求助30
11秒前
Hello应助科研欢采纳,获得10
11秒前
yuzi完成签到,获得积分10
12秒前
12秒前
李娜完成签到,获得积分10
12秒前
lqq发布了新的文献求助10
13秒前
13秒前
怡然的飞珍完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428779
求助须知:如何正确求助?哪些是违规求助? 4542375
关于积分的说明 14180447
捐赠科研通 4460069
什么是DOI,文献DOI怎么找? 2445607
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414012