Simulation-Assisted Deep Learning Techniques for Commercially Applicable OLED Phosphorescent Materials

磷光 有机发光二极管 集合(抽象数据类型) 材料科学 图形 计算机科学 人工神经网络 纳米技术 人工智能 理论计算机科学 物理 荧光 图层(电子) 量子力学 程序设计语言
作者
Kisoo Kwon,Kuhwan Jeong,Sanghyun Yoo,Sungjun Kim,Myungsun Sim,Seung‐Yeon Kwak,Inkoo Kim,Eun Hyun Cho,Sang Ha Park,Hasup Lee,Sunjae Lee,Changjin Oh,Hyun Cheol Koo,Sungmin Kim,M. Y. Lee,Hwidong Na,M. S. Jang
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:37 (1): 387-399
标识
DOI:10.1021/acs.chemmater.4c02754
摘要

Phosphorescent light-emitting materials play a central role in organic light-emitting diode (OLED) devices. Due to their synthesis difficulties, unsystematic trial-and-error synthesis is prohibitively challenging. For this reason, deep learning (DL), which has shown success in various fields, is being actively applied to materials discovery. However, one challenge in applying DL to phosphorescent materials is the limited amount of experimental data set. One way to circumvent this issue is to apply powerful DL techniques that have been successfully implemented in several domains. Another solution would be to use a large amount of data set for pretraining DL models with simulated properties highly relevant to target properties. In this work, phosphorescent materials are represented as strings, molecular graphs, and point clouds, which are employed by language models, two-dimensional graph, and three-dimensional graph neural networks. In addition, more than 200 000 molecules with simulated properties highly relevant to experimental properties are used for pretraining the DL models. Our work shows high performance in the prediction of five experimental properties that are importantly considered when commercializing OLED devices. This means that faster material discovery for OLEDs can be achieved through DL models that are trained with simulation information that is highly correlated with experimental properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞发布了新的文献求助10
刚刚
隐形曼青应助七七七采纳,获得10
刚刚
1秒前
共享精神应助勤奋的兔子采纳,获得10
1秒前
1秒前
Sudongdong发布了新的文献求助100
1秒前
Answer发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
ding应助辛勤大米采纳,获得10
7秒前
乐乐应助沅芷0871采纳,获得10
8秒前
唠叨的代天完成签到 ,获得积分10
9秒前
小王发布了新的文献求助10
9秒前
10秒前
11秒前
善学以致用应助猫小采纳,获得10
11秒前
12秒前
12秒前
科研通AI2S应助Cccc小懒采纳,获得10
12秒前
HopeStar发布了新的文献求助10
13秒前
cdercder应助txy采纳,获得30
13秒前
13秒前
225455完成签到,获得积分10
13秒前
14秒前
lgs发布了新的文献求助10
14秒前
14秒前
光亮的夜雪完成签到,获得积分10
15秒前
15秒前
搜集达人应助小陈同学采纳,获得10
15秒前
Owen应助Hshi采纳,获得10
16秒前
顺心的满天完成签到,获得积分20
16秒前
16秒前
LIANG发布了新的文献求助20
16秒前
16秒前
17秒前
17秒前
唧唧完成签到,获得积分20
18秒前
cure完成签到,获得积分20
19秒前
Hwenjing完成签到,获得积分10
19秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830011
求助须知:如何正确求助?哪些是违规求助? 3372520
关于积分的说明 10473113
捐赠科研通 3092110
什么是DOI,文献DOI怎么找? 1701802
邀请新用户注册赠送积分活动 818638
科研通“疑难数据库(出版商)”最低求助积分说明 770986