Integrative DNA methylome and transcriptome analysis illuminate leaf phenotype alterations in tetraploid citrus

转录组 DNA甲基化 生物 表型 遗传学 表观基因组 表观遗传学 基因 进化生物学 基因表达
作者
Hu Gao,Gong-Ao Xiao,Yīmíng Bào,Qiang-Ming Xia,Kai-Dong Xie,Xiao‐Meng Wu,Wen‐Wu Guo
标识
DOI:10.1007/s44281-024-00051-6
摘要

Abstract Whole-genome duplication (WGD) in plants triggers profound morphological and physiological changes, with DNA modification being a key epigenetic factor that helps neo-polyploids overcome challenges and gain adaptive advantages. Tetraploids were previously mined from diploid citrus seedlings, showing enhanced environmental adaptability and potential as rootstocks. These tetraploids exhibited increased leaf and cell wall thickness compared to their diploid counterparts. To explore the impact of WGD, transcriptomic and whole-genome bisulfite sequencing (WGBS) were conducted on two pairs of citrus tetraploids and their diploid controls, revealing significant molecular changes. Notably, tetraploid citrus displayed lower CG methylation levels in gene and transposable element (TE) bodies relative to diploids. Differentially methylated genes (DMGs) between tetraploids and diploids were primarily associated with immune stress, organ development, metabolic pathways, and secondary metabolism. In Trifoliate orange ( Poncirus trifoliata L. Raf.) and Ziyang Xiangcheng ( Citrus junos Sieb . ex Tanaka), only 150 and 58 differentially expressed genes (DEGs) were identified, respectively, with enrichment in critical cellular processes such as cell wall synthesis, plastid development, and pathways modulating chloroplasts and plasma membranes. A total of 70 genes showed both differential methylation and expression, including ACN1 , Nac036 , and ASMT1 , which are involved in stomatal development, leaf morphology, and melatonin synthesis, respectively, offering insight into the regulatory mechanisms of phenotype alterations after polyploidization. These findings reveal the epigenetic modifications in polyploid citrus and highlight the role of polyploidization-induced methylation in driving phenotypic changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1.1发布了新的文献求助10
3秒前
3秒前
4秒前
鹏程万里完成签到,获得积分10
4秒前
小胖砸完成签到 ,获得积分10
5秒前
yahong发布了新的文献求助10
8秒前
是冬天完成签到 ,获得积分10
8秒前
共享精神应助xinxiangshicheng采纳,获得10
9秒前
桐桐应助茂茂采纳,获得10
9秒前
10秒前
香蕉觅云应助unue采纳,获得10
10秒前
10秒前
10秒前
虚拟的含灵完成签到,获得积分10
11秒前
11秒前
小丁同学应助zhdjj采纳,获得10
12秒前
勿忘9451发布了新的文献求助10
15秒前
15秒前
小二郎应助果粒多采纳,获得30
15秒前
小月986完成签到,获得积分10
15秒前
111发布了新的文献求助10
16秒前
17秒前
科研通AI2S应助KukudMing采纳,获得10
18秒前
19秒前
21秒前
21秒前
LL完成签到,获得积分10
21秒前
无边落木发布了新的文献求助10
22秒前
核桃发布了新的文献求助10
22秒前
上官若男应助小孙采纳,获得10
23秒前
Yy123发布了新的文献求助10
24秒前
26秒前
奉天发布了新的文献求助10
27秒前
鲤鱼凛发布了新的文献求助20
28秒前
yahong发布了新的文献求助10
30秒前
32秒前
乐乐完成签到 ,获得积分10
33秒前
默默的念芹完成签到 ,获得积分10
34秒前
35秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899796
求助须知:如何正确求助?哪些是违规求助? 3444386
关于积分的说明 10834939
捐赠科研通 3169429
什么是DOI,文献DOI怎么找? 1751105
邀请新用户注册赠送积分活动 846489
科研通“疑难数据库(出版商)”最低求助积分说明 789226