Credit Risk Prediction using Ensemble Machine Learning Algorithms

梯度升压 机器学习 计算机科学 阿达布思 人工智能 随机森林 信用风险 贷款 Boosting(机器学习) 集成学习 抵押品 算法 财务 支持向量机 经济
作者
Vijaya Kanaparthi
标识
DOI:10.1109/icict57646.2023.10134486
摘要

Credit risk is a significant focus in the banking and finance industry since evaluating the borrower's ability to repay a loan is crucial before extending credit. Also, in emerging nations, the underbanked population lacks access to the collateral and identification often necessary by banks before they will issue loans. This research study proposes a novel approach for predicting credit risk in financial institutions using ensemble machine learning models. The data is preprocessed, and relevant features are selected by evaluating the feature's importance using the information gain method. The first ten relevant features are selected for training the machine learning models. To predict credit risk, the suggested method used gradient boosting algorithms, including XGBoost, XGBoost RF, and CatBoost. The proposed approach is compared with other state-of-the-art algorithms like Adaboost, Random forest, and neural networks. Moreover, the findings prove that gradient-boosting algorithms like Xgboost and CatBoost outpace other algorithms by achieving the highest training accuracy of 93.7% and 93.6%, respectively, and testing accuracy of 93.6% and 93.8%, respectively. While XGBoost takes comparatively one-third of the time for training concerning the CatBoost. Hence, the XGBoost outperforms all the models regarding the accuracy and time trade-off. Hence, the proposed approach can be applied to financial institutions to provide credit to high-security borrowers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
AronHUANG发布了新的文献求助10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
zhangdan发布了新的文献求助10
2秒前
在水一方应助研友_Z6k7B8采纳,获得10
3秒前
岁安安安完成签到,获得积分10
3秒前
小伊发布了新的文献求助10
3秒前
3秒前
3秒前
你在说神马完成签到 ,获得积分10
4秒前
朱可芯发布了新的文献求助10
4秒前
4秒前
Miaomiao发布了新的文献求助50
5秒前
hei完成签到,获得积分10
5秒前
不安一鸣完成签到,获得积分10
5秒前
萤火发布了新的文献求助10
5秒前
7秒前
bofu发布了新的文献求助10
7秒前
共享精神应助山复尔尔采纳,获得10
8秒前
研友_VZG7GZ应助夕荀采纳,获得10
8秒前
北海发布了新的文献求助10
8秒前
8秒前
8秒前
暗弱发布了新的文献求助10
9秒前
冷静灵竹完成签到,获得积分10
10秒前
zydf完成签到,获得积分10
10秒前
10秒前
wendydqw完成签到,获得积分10
10秒前
10秒前
爱撒娇的酸奶完成签到,获得积分10
11秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831932
求助须知:如何正确求助?哪些是违规求助? 3374210
关于积分的说明 10483852
捐赠科研通 3094099
什么是DOI,文献DOI怎么找? 1703329
邀请新用户注册赠送积分活动 819378
科研通“疑难数据库(出版商)”最低求助积分说明 771463