Development and validation of an interpretable machine learning model for predicting progression-free survival after immunotherapy in patients with non-small cell lung cancer: a multicenter study

作者
Ya Li,Xia Ji,Tony He,Yong‐Jie Hu,Daobin Zhou,Dan Zou,Benlan Li,Min Zhang,Zhongjun Huang,M. Zhang,Xuzhen Liu,Minfang Wang,Hongyan Luo,Fangyang Lu,Chuan Zhang,Xingxing Zhao,Shengfa Su,Jie Peng
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fimmu.2025.1686260
摘要

Background This study aimed to develop and validate an interpretable machine learning model that harnesses circulating tumor DNA (ctDNA) to predict progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC) undergoing immunotherapy, thereby addressing the inherent limitations of conventional biomarkers such as PD-L1 expression and tumor mutational burden. Methods This multicenter study involved pretreatment ctDNA profiling of 441 patients with non-small cell lung cancer (NSCLC), stratified into three independent cohorts: a training set (n=303, OAK trial), a validation set (n=97, POPLAR trial), and a local test set (n=41, multicenter retrospective cohort, 2023–2024). Using 5-fold cross-validated LASSO-Cox (Least Absolute Shrinkage and Selection Operator-Cox Proportional Hazards) regression, 25 prognostic genomic features were identified for integration into an eXtreme Gradient Boosting (XGBoost) model. Model performance was systematically evaluated via three approaches: (1) discrimination metrics, including AUC with 95% confidence intervals, accuracy, sensitivity, and specificity; (2) Kaplan-Meier survival analysis complemented by log-rank testing; and (3) SHapley Additive exPlanations (SHAP) for interpreting feature importance. Results The model exhibited robust predictive performance, with AUCs of 0.82 (training cohort), 0.79 (validation cohort), and 0.77 (test cohort). Key genomic predictors included TP53 mutations, which were associated with shorter PFS, and BRCA2 mutations, which correlated with longer PFS. SHAP analysis identified NOTCH1 as a novel predictive biomarker, whose feature contribution profile suggests a role in immune modulation in lung squamous cell carcinoma. Risk stratification significantly distinguished PFS outcomes (log-rank P < 0.05). Decision curve analysis confirmed the model’s clinical utility, as it outperformed “treat-all” strategies. Conclusion This study establishes a robust, interpretable ctDNA-derived machine learning algorithm for predicting PFS in NSCLC patients receiving immune checkpoint inhibitors. The identification of TP53, BRCA2, and NOTCH1 as biologically plausible predictive biomarkers advances understanding of immunotherapy response mechanisms and enables clinically actionable risk stratification to guide therapeutic decision-making. These findings underscore the need for prospective multicenter validation to facilitate translation into precision oncology practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎石头发布了新的文献求助20
刚刚
高高高发布了新的文献求助10
刚刚
2150号发布了新的文献求助10
1秒前
等待毛豆完成签到,获得积分10
1秒前
雪山飞龙发布了新的文献求助10
1秒前
顾矜应助曾经很天真采纳,获得10
2秒前
黎奈发布了新的文献求助10
2秒前
科研小白完成签到,获得积分20
3秒前
乐悠L完成签到 ,获得积分10
4秒前
4秒前
6秒前
7秒前
科研小白发布了新的文献求助30
8秒前
高高高完成签到,获得积分10
9秒前
10秒前
小蘑菇应助包容的小懒虫采纳,获得10
10秒前
机智的雁荷完成签到 ,获得积分10
11秒前
11秒前
12秒前
时2完成签到,获得积分10
13秒前
黎奈完成签到,获得积分10
13秒前
15秒前
Mmmmarys发布了新的文献求助10
17秒前
今后应助胡图图采纳,获得10
20秒前
海棠依旧完成签到,获得积分10
21秒前
22秒前
852应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得100
25秒前
zhuzhu完成签到 ,获得积分10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
无极微光应助科研通管家采纳,获得20
25秒前
田様应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601954
求助须知:如何正确求助?哪些是违规求助? 4687248
关于积分的说明 14848264
捐赠科研通 4682437
什么是DOI,文献DOI怎么找? 2539610
邀请新用户注册赠送积分活动 1506406
关于科研通互助平台的介绍 1471359