The Power of Multiple Artificial Intelligence Models to Predict Global Chronic Kidney Disease Incidence: Who Leads the Race?

作者
Jianbo Qing,Wisit Cheungpasitporn,Kaili Qin,Xiao Wang,Yafeng Li,Junnan Wu
出处
期刊:American Journal of Nephrology [S. Karger AG]
卷期号:: 1-10
标识
DOI:10.1159/000549005
摘要

Introduction: The global incidence of chronic kidney disease (CKD) continues to rise, but delayed epidemiological data pose challenges to public health policy. Traditional surveillance methods often suffer from reporting delays. Recent advances in artificial intelligence (AI) offer novel opportunities for enhancing disease burden predictions. Methods: We collected CKD incidence data from 21 Global Burden of Disease (GBD) regions spanning from 1990 to 2021. Using five advanced AI models (GPT-4o, Claude-3.7, DeepSeek-R1, Grok-3, and Gemini 2.5) and two traditional forecasting methods (autoregressive integrated moving average and Bayesian age-period-cohort), we predicted CKD incidence for 2023. The performance of the models was evaluated by comparing the predicted values to the actual observed data. All models were trained using the same data and instructions. Results: The AI models and traditional models performed similarly, with near-perfect accuracy in predicting incidence rates in regions such as the Americas, Central Europe, East Asia, high-income Asia Pacific, Southeast Asia, and tropical Latin America. Among the models, GPT-4o demonstrated the highest mean accuracy of 0.722, with all models achieving average accuracies above 0.65. No statistically significant difference in accuracy was observed between AI-based and traditional models (ANOVA p = 0.27). Conclusion: State-of-the-art AI models, when systematically prompted and standardized, can predict global CKD incidence with accuracy comparable to traditional statistical models. AI-driven epidemiological forecasting holds promise for enhancing real-time public health planning and resource allocation, particularly in regions with stable historical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
修辛发布了新的文献求助10
1秒前
共享精神应助觉醒青年采纳,获得10
1秒前
2秒前
无花果应助王璐璐采纳,获得10
2秒前
zyb发布了新的文献求助10
4秒前
听闻完成签到 ,获得积分10
4秒前
张彩发布了新的文献求助10
4秒前
4秒前
SheltonYang发布了新的文献求助10
4秒前
hsa_ID发布了新的文献求助10
5秒前
jenningseastera应助幽兰伊伴采纳,获得10
7秒前
无花果应助lixin采纳,获得10
7秒前
7秒前
8秒前
Jason完成签到,获得积分10
8秒前
星辰大海应助朝阳满意采纳,获得10
8秒前
9秒前
动人的诗霜完成签到 ,获得积分10
9秒前
科研通AI6应助知止采纳,获得10
9秒前
echo完成签到 ,获得积分10
10秒前
10秒前
木南完成签到,获得积分10
11秒前
小白发布了新的文献求助10
11秒前
坦率念文发布了新的文献求助10
15秒前
16秒前
gexzygg应助春风不语采纳,获得20
17秒前
FashionBoy应助木南采纳,获得10
17秒前
打打应助lixin采纳,获得10
17秒前
朝阳满意发布了新的文献求助10
20秒前
我是老大应助HLL采纳,获得10
24秒前
25秒前
27秒前
Cathy完成签到 ,获得积分10
28秒前
CS发布了新的文献求助10
28秒前
传奇3应助桃洛璟采纳,获得10
29秒前
29秒前
赖氨酸发布了新的文献求助10
29秒前
XXXXXX发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560690
求助须知:如何正确求助?哪些是违规求助? 4645958
关于积分的说明 14676816
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516803
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136