Application of the hybrid neural network model for energy consumption prediction of office buildings

能源消耗 残余物 卷积神经网络 均方误差 人工神经网络 滑动窗口协议 计算机科学 特征(语言学) 人工智能 能量(信号处理) 模拟 数据挖掘 机器学习 工程类 算法 统计 窗口(计算) 数学 电气工程 语言学 哲学 操作系统
作者
Lize Wang,Dong Xie,Lifeng Zhou,Zixuan Zhang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:72: 106503-106503 被引量:10
标识
DOI:10.1016/j.jobe.2023.106503
摘要

Accurate building energy consumption prediction is crucial to the rational planning of building energy systems. The energy consumption of buildings is influenced by various elements and is characterized by non-linearity and non-stationarity. To fully tap the time series characteristics of building energy consumption and heighten the model's prediction accuracy, this paper proposes a hybrid neural network prediction model combining attention mechanism, Bidirectional Gate Recurrent Unit (BiGRU), Convolutional Neural Networks (CNN), and the residual connection. The model uses BiGRU to train the extracted feature vectors by CNN on a two-way cycle. The attention mechanism highlights the key information extracted, and the residual connection is used to learn the features fully. Taking the energy consumption data of an office building in Guangzhou, China, as the object of study, the results indicate that the proposed model shows a stronger prediction accuracy than the commonly used model with an R2 of 90.74% and a CV-RMSE of 19.24%. Compared with the other five common models, the RMSE, MAPE, and MAE of the proposed model achieve lower error rates. Besides, the length 24 of the sliding window exceeds other lengths in the established model. The prediction accuracy of the established model in working hours outperforms the non-working hours of the office building. Building energy consumption prediction in the same season is better than that in the whole year.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助追雨的风采纳,获得10
3秒前
随便完成签到 ,获得积分10
4秒前
坦率尔蝶完成签到 ,获得积分10
4秒前
5秒前
聆风吟发布了新的文献求助10
5秒前
5秒前
自然的霸完成签到 ,获得积分10
8秒前
9秒前
尔容发布了新的文献求助10
9秒前
起名废人发布了新的文献求助10
9秒前
11秒前
11秒前
扶风追梦完成签到,获得积分10
12秒前
Kirito应助七曜采纳,获得10
12秒前
12秒前
22222发布了新的文献求助10
14秒前
Robin发布了新的文献求助10
15秒前
shusz完成签到,获得积分10
16秒前
过时的梦松完成签到,获得积分10
16秒前
英俊的铭应助save采纳,获得10
16秒前
Ruan完成签到,获得积分10
17秒前
追雨的风发布了新的文献求助10
17秒前
CC发布了新的文献求助10
18秒前
科研通AI2S应助起名废人采纳,获得10
19秒前
慕青应助扶风追梦采纳,获得10
23秒前
敏感的莫言完成签到 ,获得积分10
24秒前
27秒前
27秒前
AAA完成签到,获得积分10
28秒前
聆风吟完成签到,获得积分10
29秒前
周老八发布了新的文献求助10
30秒前
30秒前
科研通AI2S应助jack采纳,获得10
32秒前
NSS完成签到 ,获得积分10
33秒前
松子儿hhh完成签到,获得积分10
33秒前
酒酒完成签到 ,获得积分10
33秒前
领导范儿应助周老八采纳,获得10
35秒前
在水一方应助周老八采纳,获得10
35秒前
深情安青应助周老八采纳,获得10
35秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843938
求助须知:如何正确求助?哪些是违规求助? 3386232
关于积分的说明 10544633
捐赠科研通 3107057
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774440