Human-Centric Transformer for Domain Adaptive Action Recognition

计算机科学 动作识别 人工智能 变压器 模式识别(心理学) 计算机视觉 工程类 电压 电气工程 班级(哲学)
作者
Kun-Yu Lin,Jiaming Zhou,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18 被引量:3
标识
DOI:10.1109/tpami.2024.3429387
摘要

We study the domain adaptation task for action recognition, namely domain adaptive action recognition, which aims to effectively transfer action recognition power from a label-sufficient source domain to a label-free target domain. Since actions are performed by humans, it is crucial to exploit human cues in videos when recognizing actions across domains. However, existing methods are prone to losing human cues but prefer to exploit the correlation between non-human contexts and associated actions for recognition, and the contexts of interest agnostic to actions would reduce recognition performance in the target domain. To overcome this problem, we focus on uncovering human-centric action cues for domain adaptive action recognition, and our conception is to investigate two aspects of human-centric action cues, namely human cues and human-context interaction cues. Accordingly, our proposed Human-Centric Transformer (HCTransformer) develops a decoupled human-centric learning paradigm to explicitly concentrate on human-centric action cues in domain-variant video feature learning. Our HCTransformer first conducts human-aware temporal modeling by a human encoder, aiming to avoid a loss of human cues during domain-invariant video feature learning. Then, by a Transformer-like architecture, HCTransformer exploits domain-invariant and action-correlated contexts by a context encoder, and further models domain-invariant interaction between humans and action-correlated contexts. We conduct extensive experiments on three benchmarks, namely UCF-HMDB, Kinetics-NecDrone and EPIC-Kitchens-UDA, and the state-of-the-art performance demonstrates the effectiveness of our proposed HCTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
时光里完成签到,获得积分10
1秒前
plm完成签到,获得积分10
1秒前
高铁完成签到,获得积分10
1秒前
liangmh发布了新的文献求助10
1秒前
li2010发布了新的文献求助10
4秒前
饱满不悔发布了新的文献求助10
5秒前
大模型应助范晓阳采纳,获得10
5秒前
传奇3应助卜卜采纳,获得10
5秒前
6秒前
allen发布了新的文献求助30
7秒前
a雪橙发布了新的文献求助10
7秒前
7秒前
Duke_ethan完成签到,获得积分10
7秒前
英俊的铭应助dzll采纳,获得10
8秒前
10秒前
10秒前
科研通AI5应助seattle采纳,获得10
10秒前
芝麻汤圆完成签到,获得积分10
11秒前
小伙子完成签到,获得积分10
11秒前
Jeff发布了新的文献求助10
11秒前
11秒前
12秒前
开开发布了新的文献求助10
12秒前
14秒前
OCDer应助抽象电台头采纳,获得200
14秒前
123发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
科研通AI2S应助xun采纳,获得10
18秒前
丘比特应助秀儿采纳,获得10
19秒前
优秀的排球完成签到,获得积分10
19秒前
dzll发布了新的文献求助10
19秒前
19秒前
19秒前
勤奋发卡完成签到,获得积分20
19秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829952
求助须知:如何正确求助?哪些是违规求助? 3372514
关于积分的说明 10472969
捐赠科研通 3092095
什么是DOI,文献DOI怎么找? 1701755
邀请新用户注册赠送积分活动 818609
科研通“疑难数据库(出版商)”最低求助积分说明 770986