Lateral frontoparietal effective connectivity differentiates and predicts state of consciousness in a cohort of patients with traumatic disorders of consciousness

持续植物状态 意识障碍 意识 最小意识状态 功能连接 医学 神经科学 队列 心理学 病理
作者
Riku Ihalainen,Jitka Annen,Olivia Gosseries,Paolo Cardone,Rajanikant Panda,Charlotte Martial,Aurore Thibaut,Steven Laureys,Srivas Chennu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (7): e0298110-e0298110
标识
DOI:10.1371/journal.pone.0298110
摘要

Neuroimaging studies have suggested an important role for the default mode network (DMN) in disorders of consciousness (DoC). However, the extent to which DMN connectivity can discriminate DoC states-unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS)-is less evident. Particularly, it is unclear whether effective DMN connectivity, as measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this extends to UWS patients with potentially "covert" awareness (minimally conscious star, MCS*) indexed by voluntary brain activity in conjunction with partially preserved frontoparietal metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET- and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation, we tested the classification performance of the DCM models demonstrating that connectivity between medial prefrontal and left parietal sources reliably discriminates UWS PET- from MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS* patients as conscious subjects with high posterior probability (pp > .92). These results identify specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-based effective connectivity for identifying patients with potential covert awareness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76给Jiang的求助进行了留言
1秒前
setid完成签到 ,获得积分10
1秒前
日照金峰给日照金峰的求助进行了留言
1秒前
乘风破浪完成签到 ,获得积分0
1秒前
陈椅子的求学完成签到,获得积分10
1秒前
一只生物狗完成签到,获得积分10
1秒前
寯齆完成签到,获得积分10
2秒前
高兴的易形完成签到,获得积分10
2秒前
xxmol完成签到,获得积分20
2秒前
一包辣条完成签到,获得积分10
3秒前
青木蓝完成签到,获得积分10
3秒前
124cndhaP完成签到,获得积分10
3秒前
NICKPLZ完成签到,获得积分10
3秒前
奋斗的成协完成签到 ,获得积分10
3秒前
害羞含雁完成签到,获得积分10
4秒前
4秒前
4秒前
王山发布了新的文献求助10
5秒前
wqm完成签到,获得积分10
5秒前
自然雁风发布了新的文献求助10
5秒前
香蕉觅云应助止咳宝采纳,获得10
5秒前
Lillie完成签到,获得积分10
5秒前
mmx完成签到,获得积分10
6秒前
xxmol发布了新的文献求助20
6秒前
专心搞科研完成签到 ,获得积分10
6秒前
6秒前
WUT完成签到,获得积分10
6秒前
柠橙完成签到,获得积分10
7秒前
大秦骑兵完成签到,获得积分10
7秒前
shining完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
无所谓的啦给无所谓的啦的求助进行了留言
8秒前
菜菜鱼完成签到,获得积分10
8秒前
静静等待完成签到,获得积分10
8秒前
科研通AI2S应助chengshaoyan采纳,获得10
8秒前
体贴薯片完成签到,获得积分10
9秒前
泉眼完成签到 ,获得积分10
9秒前
浑映之完成签到,获得积分10
9秒前
江恪完成签到,获得积分10
9秒前
卡乐瑞咩吹可完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927274
求助须知:如何正确求助?哪些是违规求助? 4196631
关于积分的说明 13033926
捐赠科研通 3969413
什么是DOI,文献DOI怎么找? 2175332
邀请新用户注册赠送积分活动 1192422
关于科研通互助平台的介绍 1103141