亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative Adversarial Networks with Radiomics Supervision for Lung Lesion Generation

无线电技术 对抗制 计算机科学 人工智能 生成语法 机器学习 模式识别(心理学)
作者
Junyuan Li,Shaoyan Pan,Xiaoxuan Zhang,Cheng Ting Lin,J. Webster Stayman,Grace J. Gang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tbme.2024.3451409
摘要

Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional generation of lung lesions based on user-specified classes of lesion size and solidity. The network consists of two discriminators, one for volumetric lesion data, and one for radiomics features derived from the lesion volume. A Wasserstein loss with gradient penalty was adopted for each discriminator. Training data were drawn from contoured and annotated lesions from a public lung CT database. Four quantitative evaluation methods were devised to assess the network performance: 1) overfitting (similarity between generated and real lesions), 2) diversity (similarity among generated lesions), 3) conditional consistency (capability of generating lesions according to user-specified classes), and 4) similarity in distributions of various lesion properties between the generated and real lesions. Ablation studies were also performed to investigate the importance of individual network component. The proposed network was found to generate lesions that resemble real lesions by visual inspection. Solid lesions are distinct from non-solid ones, and lesion sizes largely correspond to their specified classes. With a classifier trained on real lesions, the classification accuracies of generated and real lesions in both solid and non-solid classes are similar. Radiomics features of generated and real lesions were found to have similar distributions, indicated by the relatively low Kullback-Leibler (KL) divergence values. Furthermore, the correlations between pairwise radiomics features in generated lesions were comparable to those of real lesions. The proposed network presents a promising approach for generating realistic lesions with clinically relevant features crucial for the comprehensive assessment of medical imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hayat发布了新的文献求助20
16秒前
Roc关注了科研通微信公众号
17秒前
小蘑菇应助细腻烙采纳,获得10
25秒前
25秒前
XuChaogang发布了新的文献求助30
29秒前
30秒前
32秒前
cokevvv发布了新的文献求助10
36秒前
Roc发布了新的文献求助10
37秒前
星辰大海应助cokevvv采纳,获得10
50秒前
SciGPT应助XuChaogang采纳,获得10
53秒前
andrele完成签到,获得积分10
56秒前
XuChaogang完成签到,获得积分10
1分钟前
1分钟前
littlepear发布了新的文献求助10
1分钟前
爆米花应助好好好采纳,获得10
1分钟前
Magali发布了新的文献求助30
1分钟前
littlepear完成签到,获得积分20
1分钟前
柿饼完成签到,获得积分10
1分钟前
d83应助husky采纳,获得10
1分钟前
1分钟前
1分钟前
好好好发布了新的文献求助10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
TailongShi发布了新的文献求助50
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得30
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
digger2023完成签到 ,获得积分10
3分钟前
子平完成签到 ,获得积分0
3分钟前
Hayat发布了新的文献求助20
3分钟前
Hayat发布了新的文献求助20
4分钟前
HS完成签到,获得积分10
4分钟前
Hello应助lls采纳,获得10
4分钟前
风中音响发布了新的文献求助10
4分钟前
无产阶级科学者完成签到,获得积分10
4分钟前
4分钟前
lls发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753491
求助须知:如何正确求助?哪些是违规求助? 4097824
关于积分的说明 12678610
捐赠科研通 3811037
什么是DOI,文献DOI怎么找? 2104043
邀请新用户注册赠送积分活动 1129224
关于科研通互助平台的介绍 1006481