Prediction of Seronegative Hashimoto's thyroiditis using machine learning models based on ultrasound radiomics: a multicenter study

无线电技术 甲状腺炎 医学 多中心研究 超声波 免疫学 机器学习 人工智能 甲状腺 病理 内科学 计算机科学 放射科 随机对照试验
作者
Wenjun Wu,Shengsheng Yao,Daming Liu,Yuan Luo,Yihan Sun,Ting Ruan,Mengyou Liu,Shihua Li,Chang Liu,Mingming Xiao,Qi Zhang,Zhengshuai Liu,Xingai Ju,Jiahao Wang,Xiang Fei,Liwei Lu,Yang Gao,Ying Zhang,Liying Gong,Xuanyu Chen
出处
期刊:BMC Immunology [BioMed Central]
卷期号:26 (1)
标识
DOI:10.1186/s12865-025-00708-5
摘要

Seronegative Hashimoto's thyroiditis is often underdiagnosed due to the lack of antibody markers. Combining ultrasound radiomics with machine learning offers potential for early detection in patients with normal thyroid function. Data from 164 patients with single thyroid lesions and normal thyroid function, treated surgically between 2016 and 2024, were retrospectively collected from four hospitals. Radiomics features were extracted from ultrasound images of non-tumorous hypoechoic areas. Pathological lymphocytic infiltration and hypoechoic ratios were evaluated by senior pathologists and ultrasound physicians. A machine learning model, CCH-NET, was developed using a random forest classifier after feature selection with Least Absolute Shrinkage and Selection Operator (LASSO) regression. The model was trained and tested with an 80:20 split and compared to senior ultrasound physicians. The CCH-NET model achieved a sensitivity of 0.762, specificity of 0.714, and an area under the curve (AUC) of 0.8248, outperforming senior ultrasound physicians (AUC = 0.681). It maintained consistent accuracy across test sets, with F1 scores of 0.778 and 0.720 in Test_1 and Test_2, respectively, and exhibited superior predictive rates. The CCH-NET model enhances accuracy in detecting early Seronegative Hashimoto's thyroiditis over senior ultrasound physicians. No. [2023] H013 TRIAL REGISTRATION: Chinese Clinical Trial Registry;CTR2400092179; 12 November 2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低歌曲完成签到,获得积分10
1秒前
WaitP应助叶子采纳,获得10
2秒前
wyblobin完成签到,获得积分10
3秒前
4秒前
zxt完成签到,获得积分10
4秒前
壮观的夏蓉完成签到,获得积分10
5秒前
请您多关心完成签到 ,获得积分10
5秒前
科研通AI5应助端庄秋柳采纳,获得10
5秒前
wezb完成签到 ,获得积分10
5秒前
6秒前
6秒前
不吃橘子完成签到,获得积分10
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
苏南完成签到 ,获得积分10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
揽月yue应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
song完成签到 ,获得积分10
8秒前
慎ming发布了新的文献求助10
8秒前
Aprial完成签到,获得积分10
9秒前
WMT完成签到 ,获得积分10
9秒前
YY发布了新的文献求助10
11秒前
科研小达子完成签到,获得积分10
12秒前
CipherSage应助10采纳,获得10
12秒前
背书强完成签到 ,获得积分10
12秒前
超级的飞飞完成签到,获得积分10
13秒前
慎ming完成签到,获得积分10
13秒前
Sherry完成签到,获得积分10
15秒前
韩野完成签到,获得积分10
16秒前
北冥有鱼完成签到,获得积分10
17秒前
欢呼南晴完成签到,获得积分10
18秒前
19秒前
帕提古丽完成签到 ,获得积分20
20秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346708
关于积分的说明 10329984
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726