Deep learning based on ultrasound images predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma

医学 淋巴 甲状腺癌 淋巴结 超声波 放射科 颈淋巴结 回顾性队列研究 单变量分析 内科学 多元分析 肿瘤科 转移 病理 甲状腺 癌症
作者
Fengjing Fan,Fei Li,Yixuan Wang,Ying Liu,Kesong Wang,Xiaoming Xi,Bei Wang
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1093/bjr/tqaf047
摘要

Abstract Objectives To develop a deep learning (DL) model based on ultrasound (US) images of lymph nodes for predicting cervical lymph node metastasis (CLNM) in postoperative patients with differentiated thyroid carcinoma (DTC). Methods Retrospective collection of 352 lymph nodes from 330 patients with cytopathology findings between June 2021 and December 2023 at our institution. The database was randomly divided into the training and test cohort at an 8:2 ratio. The DL basic model of longitudinal and cross-sectional of lymph nodes was constructed based on ResNet50 respectively, and the results of the two basic models were fused (1:1) to construct a longitudinal + cross-sectional DL model. Univariate and multivariate analysis were used to assess US features and construct a conventional US model. Subsequently, a combined model was constructed by integrating DL and US. Results The diagnostic accuracy of the longitudinal + cross-sectional DL model was higher than that of longitudinal or cross-sectional alone. The AUC of the combined model (US+DL) was 0.855 (95%CI: 0.767-0.942), and the accuracy, sensitivity and specificity were 0.786 (95%CI: 0.671-0.875), 0.972 (95%CI: 0.855-0.999) and 0.588 (95%CI: 0.407-0.754), respectively. Compared with US and DL models, the IDI and NRI of the combined model are both positive. Conclusions This study preliminary shows that the DL model based on US images of lymph nodes has a high diagnostic efficacy for predicting CLNM in postoperative patients with DTC, and the combined model of US+DL is superior to single conventional US and DL for predicting CLNM in this population. Advances in knowledge We innovatively used DL of lymph node US images to predict the status of cervical lymph nodes in postoperative patients with DTC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
61414发布了新的文献求助10
3秒前
鲜蘑完成签到,获得积分10
4秒前
6秒前
乐乐应助个性向珊采纳,获得10
8秒前
9秒前
猪头军师完成签到,获得积分10
10秒前
是瓜瓜不完成签到,获得积分10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
wwwww完成签到 ,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
cdercder应助61414采纳,获得10
13秒前
13秒前
传奇3应助61414采纳,获得10
13秒前
科研通AI5应助欣喜眼神采纳,获得10
13秒前
英俊的铭应助张张采纳,获得10
14秒前
hfbbaby完成签到,获得积分10
14秒前
zz发布了新的文献求助10
15秒前
Darknewnew发布了新的文献求助10
15秒前
15秒前
16秒前
bkagyin应助圆1223采纳,获得10
16秒前
共享精神应助pxj采纳,获得10
18秒前
祎薇发布了新的文献求助10
19秒前
19秒前
闻元杰发布了新的文献求助10
19秒前
20秒前
22秒前
鲁花花完成签到 ,获得积分10
24秒前
24秒前
容与发布了新的文献求助10
25秒前
yaya完成签到,获得积分10
25秒前
负责的归尘完成签到,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818668
求助须知:如何正确求助?哪些是违规求助? 3361732
关于积分的说明 10414088
捐赠科研通 3080008
什么是DOI,文献DOI怎么找? 1693725
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768262