CT-derived fractional flow reserve on therapeutic management and outcomes compared with coronary CT angiography in coronary artery disease

部分流量储备 医学 冠状动脉疾病 心脏病学 冠状动脉造影 血管造影 内科学 放射科 心肌梗塞
作者
Ying Qian,Meng Chen,Chunhong Hu,Ximing Wang
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:98 (1170): 956-964 被引量:1
标识
DOI:10.1093/bjr/tqaf055
摘要

Abstract Objectives To determine the value of on-site deep learning-based CT-derived fractional flow reserve (CT-FFR) for therapeutic management and adverse clinical outcomes in patients suspected of coronary artery disease (CAD) compared with coronary CT angiography (CCTA) alone. Methods This single-centre prospective study included consecutive patients suspected of CAD between June 2021 and September 2021 at our hospital. Four hundred and sixty-one patients were randomized into either CT-FFR+CCTA or CCTA-alone group. The first endpoint was the invasive coronary angiography (ICA) efficiency, defined as the ICA with nonobstructive disease (stenosis <50%) and the ratio of revascularization to ICA (REV-to-ICA ratio) within 90 days. The second endpoint was the incidence of major adverse cardiaovascular events (MACE) at 2 years. Results A total of 461 patients (267 [57.9%] men; median age, 64 [55-69]) were included. At 90 days, the rate of ICA with nonobstructive disease in the CT-FFR+CCTA group was lower than in the CCTA group (14.7% vs 34.0%, P=.047). The REV-to-ICA ratio in the CT-FFR+CCTA group was significantly higher than in the CCTA group (73.5% vs. 50.9%, P=.036). No significant difference in ICA efficiency was found in intermediate stenosis (25%-69%) between the 2 groups (all P>.05). After a median follow-up of 23 (22-24) months, MACE were observed in 11 patients in the CT-FFR+CCTA group and 24 in the CCTA group (5.9% vs 10.0%, P=.095). Conclusions The on-site deep learning-based CT-FFR improved the efficiency of ICA utilization with a similarly low rate of MACE compared with CCTA alone. Advances in knowledge The on-site deep learning-based CT-FFR was superior to CCTA for therapeutic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助XIN采纳,获得10
1秒前
尼古拉斯发布了新的文献求助10
4秒前
科研通AI6应助三十三天采纳,获得10
4秒前
嘿嘿应助hua采纳,获得10
6秒前
科研通AI6应助Leon采纳,获得30
7秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
江吉完成签到 ,获得积分10
11秒前
铁星发布了新的文献求助10
15秒前
16秒前
16秒前
曾婉之发布了新的文献求助10
21秒前
烧冻鸡翅完成签到,获得积分10
21秒前
科研通AI6应助优秀的问枫采纳,获得10
22秒前
JamesPei应助yao chen采纳,获得10
22秒前
钟昊完成签到,获得积分10
22秒前
怡然的服饰发布了新的文献求助200
22秒前
香蕉觅云应助Lusteri采纳,获得10
23秒前
ssx完成签到,获得积分10
23秒前
高夕硕完成签到,获得积分10
23秒前
24秒前
科目三应助无风风采纳,获得10
24秒前
研友_VZG7GZ应助淡如水采纳,获得10
25秒前
25秒前
Redback应助Neilllllllllll采纳,获得30
29秒前
pancake发布了新的文献求助10
30秒前
三十三天完成签到,获得积分10
30秒前
xu应助冷艳的海白采纳,获得10
30秒前
31秒前
32秒前
怜然发布了新的文献求助20
33秒前
曾婉之完成签到,获得积分20
36秒前
haocong发布了新的文献求助10
36秒前
张佳乐发布了新的文献求助10
37秒前
iNk应助pancake采纳,获得10
38秒前
zzzz发布了新的文献求助10
38秒前
青青完成签到,获得积分10
39秒前
40秒前
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716