Combined Analysis of Network Toxicology and Multiomics Revealed the Potential Mechanism of 6PPDQ-Induced Hepatotoxicity in Mice

机制(生物学) 毒理 化学 生物 物理 量子力学
作者
Bo Li,Chenchen Xu,Duo Zhang,Siwen Wang,Jingwen Xu,Bang Xiao,Feng Yue,Huameng Fu,Xiaoxiao Chen,Ziwei Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (21): 10204-10214 被引量:14
标识
DOI:10.1021/acs.est.5c03906
摘要

6PPDQ, a rubber tire-derived environmental pollutant, exhibits significant hepatotoxicity. However, its hepatotoxic mechanisms remain insufficiently studied and systematically evaluated. This study integrated network toxicology, transcriptomics, and metabolomics to investigate its toxicity mechanisms. ADMETlab 3.0 was used to predict physicochemical properties and multiorgan toxicity. The targets related to 6PPDQ and liver injury were obtained from public databases, and a protein-protein interaction (PPI) network was constructed to identify key targets. Meanwhile, molecular docking was performed to assess 6PPDQ's binding affinity to core proteins. Transcriptomics and differential gene expression analysis were performed on the livers of Kunming mice exposed to 4 mg/kg 6PPDQ to explore transcriptomic alterations, while metabolomic profiling identified disrupted metabolic pathways. Network toxicology results reveal that 6PPDQ primarily induces hepatotoxicity through apoptosis, inflammation, and lipid metabolic disturbances. Key targets, including P53, Mapk1, Mapk14, Casp8, Traf6, Ripk1, and Tnf, are identified, with strong binding affinities suggesting direct interactions. Transcriptomic and metabolomic analyses further confirms disruptions in TNF, NF-kappa B, oxidative phosphorylation, autophagy pathways, and glycerolipid metabolism. Overall, this study provides a comprehensive mechanistic framework for 6PPDQ-induced liver injury in mice and provides a new perspective for subsequent studies on the mechanism of 6PPDQ hepatotoxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wacfpp完成签到,获得积分10
1秒前
CipherSage应助田攀采纳,获得10
1秒前
2秒前
2秒前
3秒前
小月顺利毕业版完成签到,获得积分10
4秒前
4秒前
LYSM应助美丽谷槐采纳,获得10
4秒前
FashionBoy应助懵懂的采梦采纳,获得10
4秒前
Raine完成签到,获得积分10
4秒前
科研通AI6应助老实鞯采纳,获得30
4秒前
吴彦祖完成签到,获得积分10
4秒前
11发布了新的文献求助10
5秒前
5秒前
5秒前
王女士完成签到,获得积分10
5秒前
科目三应助绝逝采纳,获得10
6秒前
研友_VZG7GZ应助CHENGJIAO采纳,获得10
6秒前
7秒前
7秒前
7秒前
jian应助真真采纳,获得10
8秒前
MoshangrenSmr完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Derik发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
核桃发布了新的文献求助10
10秒前
always完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
安详葶完成签到,获得积分10
12秒前
元谷雪发布了新的文献求助10
12秒前
林小乌龟完成签到,获得积分10
13秒前
顺利乌冬面完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398